Lightweight and multi-lesion segmentation model for diabetic retinopathy based on the fusion of mixed attention and ghost feature mapping

分割 计算机科学 人工智能 糖尿病性视网膜病变 特征(语言学) 模式识别(心理学) 增采样 深度学习 眼底(子宫) 医学 放射科 图像(数学) 语言学 哲学 糖尿病 内分泌学
作者
Weiwei Gao,Bo Fan,Yu Fang,Nan Song
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:169: 107854-107854 被引量:1
标识
DOI:10.1016/j.compbiomed.2023.107854
摘要

Diabetic retinopathy is the main cause of blindness, and lesion segmentation is an important basic work for the diagnosis of this disease. The main lesions include soft and hard exudates, microaneurysms, and hemorrhages. However, the segmentation of these four types of lesions is difficult because of their variability in size and contrast, and high intertype similarity. Currently, many network models have problems, such as a large number of parameters and complex calculations, and most segmentation models for diabetic retinopathy focus only on one type of lesion. In this study, a lightweight algorithm based on BiSeNet V2 was proposed for the segmentation of multiple lesions in diabetic retinopathy fundus. First, a hybrid attention module was embedded in the semantic branch of BiSeNet V2 for 8- and 16-fold downsampling, which helped reassign deep feature-map weights and enhanced the ability to extract local key features. Second, a ghost feature-mapping unit was used to optimize the traditional convolution layers and further reduce the computational cost. Third, a new loss function based on the dynamic threshold loss function was applied to supervise the training by adjusting the training weights of the high-loss difficult samples, which enhanced the model's attention to small goals. In experiments on the IDRiD dataset, we conducted an ablation study to verify the effectiveness of each component and compared the proposed model, BiSeNet V2-Pro, with several state-of-the-art models. In comparison with the baseline BiSeNet V2, the segmentation performance of BiSeNet V2-Pro improved by 12.17 %, 11.44 %, and 8.49 % in terms of Sensitivity (SEN), Intersection over Union (IoU), and Dice coefficient (DICE), respectively. Specifically, IoU of MA reaches 0.5716. Compared with other methods, the segmentation speed was significantly improved while ensuring segmentation accuracy, and the number of model parameters was lower. These results demonstrate the superiority of BiSeNet V2-Pro in the multi-lesion segmentation of diabetic retinopathy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奋斗的大白菜完成签到,获得积分10
刚刚
马庄宣发布了新的文献求助30
1秒前
1L完成签到,获得积分10
1秒前
一只蜗牛发布了新的文献求助10
1秒前
1秒前
hux完成签到,获得积分10
2秒前
少年发布了新的文献求助10
2秒前
丘比特应助mch采纳,获得10
2秒前
Junlei完成签到,获得积分10
3秒前
独自受罪完成签到 ,获得积分10
3秒前
俊藏星河完成签到,获得积分10
3秒前
jason完成签到,获得积分10
3秒前
开心的白昼完成签到,获得积分10
4秒前
126326发布了新的文献求助10
4秒前
tianshuai完成签到,获得积分10
4秒前
小王完成签到 ,获得积分10
5秒前
FIN应助玺月洛离采纳,获得30
5秒前
烟花应助务实的鸽子采纳,获得10
5秒前
缓慢如南完成签到,获得积分10
5秒前
li发布了新的文献求助10
6秒前
yukime完成签到,获得积分10
7秒前
悦耳从彤完成签到,获得积分10
7秒前
7秒前
OnionJJ完成签到,获得积分10
7秒前
yangben完成签到,获得积分10
8秒前
橙汁完成签到,获得积分10
8秒前
蜡笔小新完成签到,获得积分10
8秒前
小二郎应助guojingjing采纳,获得10
8秒前
9秒前
相爱就永远在一起完成签到,获得积分10
9秒前
程程完成签到,获得积分10
9秒前
冷傲路灯完成签到 ,获得积分10
9秒前
加减乘除发布了新的文献求助10
9秒前
洋山芋完成签到,获得积分10
9秒前
10秒前
tianshuai发布了新的文献求助10
11秒前
qianlan发布了新的文献求助10
11秒前
脑洞疼应助科研小白采纳,获得10
11秒前
哈哈2022完成签到,获得积分10
12秒前
侠客完成签到 ,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555935
求助须知:如何正确求助?哪些是违规求助? 3131542
关于积分的说明 9391519
捐赠科研通 2831325
什么是DOI,文献DOI怎么找? 1556415
邀请新用户注册赠送积分活动 726573
科研通“疑难数据库(出版商)”最低求助积分说明 715890