Query-Oriented Micro-Video Summarization

自动汇总 计算机科学 情报检索 编码器 相关性(法律) 多文档摘要 桥接(联网) 人工智能 判决 自然语言处理 政治学 计算机网络 操作系统 法学
作者
Mengzhao Jia,Yinwei Wei,Xuemeng Song,Teng Sun,Min Zhang,Liqiang Nie
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (6): 4174-4187 被引量:2
标识
DOI:10.1109/tpami.2024.3355402
摘要

Query-oriented micro-video summarization task aims to generate a concise sentence with two properties: (a) summarizing the main semantic of the micro-video and (b) being expressed in the form of search queries to facilitate retrieval. Despite its enormous application value in the retrieval area, this direction has barely been explored. Previous studies of summarization mostly focus on the content summarization for traditional long videos. Directly applying these studies is prone to gain unsatisfactory results because of the unique features of micro-videos and queries: diverse entities and complex scenes within a short time, semantic gaps between modalities, and various queries in distinct expressions. To specifically adapt to these characteristics, we propose a query-oriented micro-video summarization model, dubbed QMS. It employs an encoder-decoder-based transformer architecture as the skeleton. The multi-modal (visual and textual) signals are passed through two modal-specific encoders to obtain their representations, followed by an entity-aware representation learning module to identify and highlight critical entity information. As to the optimization, regarding the large semantic gaps between modalities, we assign different confidence scores according to their semantic relevance in the optimization process. Additionally, we develop a novel strategy to sample the effective target query among the diverse query set with various expressions. Extensive experiments demonstrate the superiority of the QMS scheme, on both the summarization and retrieval tasks, over several state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
科目三应助你好采纳,获得10
1秒前
英俊钢铁侠完成签到,获得积分10
1秒前
2秒前
深情安青应助yangbinsci0827采纳,获得10
2秒前
3秒前
wang发布了新的文献求助10
4秒前
研友_LjVvaL完成签到,获得积分10
5秒前
小马甲应助迅速灵竹采纳,获得10
5秒前
5秒前
刺闰土的瓜瓜完成签到,获得积分20
6秒前
自由过客发布了新的文献求助30
6秒前
PARADOX发布了新的文献求助10
7秒前
mrmaybe发布了新的文献求助10
7秒前
MeiLing完成签到,获得积分10
7秒前
7秒前
8秒前
彩色夜阑完成签到,获得积分10
8秒前
坦率耳机应助彩色的过客采纳,获得10
8秒前
自信筮发布了新的文献求助30
8秒前
魏迎蕾完成签到,获得积分10
10秒前
tian完成签到,获得积分0
11秒前
温婉的慕凝完成签到,获得积分10
12秒前
蓝天发布了新的文献求助10
12秒前
13秒前
13秒前
小鱼爱吃肉应助Hh采纳,获得10
14秒前
毛豆应助冰红茶采纳,获得10
15秒前
寒冷平蓝完成签到,获得积分10
16秒前
W29完成签到,获得积分10
17秒前
18秒前
334niubi666发布了新的文献求助10
18秒前
19秒前
陈展峰发布了新的文献求助10
19秒前
自由过客完成签到,获得积分20
20秒前
tigebnb完成签到,获得积分10
20秒前
22秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308460
求助须知:如何正确求助?哪些是违规求助? 2941800
关于积分的说明 8505840
捐赠科研通 2616702
什么是DOI,文献DOI怎么找? 1429755
科研通“疑难数据库(出版商)”最低求助积分说明 663888
邀请新用户注册赠送积分活动 648967