清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Development and validation of a deep learning signature for predicting lymph node metastasis in lung adenocarcinoma: comparison with radiomics signature and clinical-semantic model

医学 签名(拓扑) 神经组阅片室 无线电技术 淋巴结转移 临床实习 腺癌 转移 介入放射学 放射科 淋巴结 病理 人工智能 内科学 计算机科学 癌症 神经学 家庭医学 精神科 数学 几何学
作者
Xiaoling Ma,Liming Xia,Jun Chen,Weijia Wan,Wen Zhou
出处
期刊:European Radiology [Springer Nature]
卷期号:33 (3): 1949-1962 被引量:52
标识
DOI:10.1007/s00330-022-09153-z
摘要

To develop and validate a deep learning (DL) signature for predicting lymph node (LN) metastasis in patients with lung adenocarcinoma.A total of 612 patients with pathologically-confirmed lung adenocarcinoma were retrospectively enrolled and were randomly divided into training cohort (n = 489) and internal validation cohort (n = 123). Besides, 108 patients were enrolled and constituted an independent test cohort (n = 108). Patients' clinical characteristics and CT semantic features were collected. The radiomics features were derived from contrast-enhanced CT images. The clinical-semantic model and radiomics signature were built to predict LN metastasis. Furthermore, Swin Transformer was adopted to develop a DL signature predictive of LN metastasis. Model performance was evaluated by area under the receiver operating characteristic curve (AUC), sensitivity, specificity, calibration curve, and decision curve analysis. The comparisons of AUC were conducted by the DeLong test.The proposed DL signature yielded an AUC of 0.948-0.961 across all three cohorts, significantly superior to both clinical-semantic model and radiomics signature (all p < 0.05). The calibration curves show that DL signature predicted probabilities fit well the actual observed probabilities of LN metastasis. DL signature gained a higher net benefit than both clinical-semantic model and radiomics signature. The incorporation of radiomics signature or clinical-semantic risk predictors failed to reveal an incremental value over the DL signature.The proposed DL signature based on Swin Transformer achieved a promising performance in predicting LN metastasis and could confer important information in noninvasive mediastinal LN staging and individualized therapeutic options.• Accurate prediction for lymph node metastasis is crucial to formulate individualized therapeutic options for patients with lung adenocarcinoma. • The deep learning signature yielded an AUC of 0.948-0.961 across all three cohorts in predicting lymph node metastasis, superior to both radiomics signature and clinical-semantic model. • The incorporation of radiomics signature or clinical-semantic risk predictors into deep learning signature failed to reveal an incremental value over deep learning signature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默默完成签到 ,获得积分10
6秒前
40秒前
1分钟前
曾经问雁完成签到,获得积分10
1分钟前
1分钟前
曾经问雁发布了新的文献求助10
1分钟前
1分钟前
1分钟前
陈尹蓝完成签到 ,获得积分10
1分钟前
1分钟前
乐乐应助Marshall采纳,获得10
2分钟前
2分钟前
Marshall发布了新的文献求助10
2分钟前
锦鲤完成签到,获得积分10
2分钟前
科研通AI6.1应助twk采纳,获得10
2分钟前
3分钟前
大医仁心完成签到 ,获得积分10
3分钟前
NattyPoe应助科研通管家采纳,获得10
3分钟前
SciGPT应助科研通管家采纳,获得10
3分钟前
田様应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
卓天宇完成签到,获得积分0
3分钟前
量子星尘发布了新的文献求助50
3分钟前
4分钟前
小李老博完成签到,获得积分10
4分钟前
在水一方应助科研通管家采纳,获得10
5分钟前
NattyPoe应助科研通管家采纳,获得10
5分钟前
5分钟前
两个榴莲完成签到,获得积分0
5分钟前
5分钟前
魏猛完成签到,获得积分10
6分钟前
ilihe应助dd采纳,获得10
7分钟前
简单发布了新的文献求助20
7分钟前
dd完成签到,获得积分10
8分钟前
简单发布了新的文献求助20
8分钟前
开心每一天完成签到 ,获得积分10
8分钟前
无极微光应助简单采纳,获得20
9分钟前
9分钟前
Mio发布了新的文献求助10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788848
求助须知:如何正确求助?哪些是违规求助? 5712796
关于积分的说明 15473966
捐赠科研通 4916884
什么是DOI,文献DOI怎么找? 2646597
邀请新用户注册赠送积分活动 1594281
关于科研通互助平台的介绍 1548701