Development and validation of a deep learning signature for predicting lymph node metastasis in lung adenocarcinoma: comparison with radiomics signature and clinical-semantic model

医学 签名(拓扑) 神经组阅片室 无线电技术 淋巴结转移 临床实习 腺癌 转移 介入放射学 放射科 淋巴结 病理 人工智能 内科学 计算机科学 癌症 神经学 家庭医学 精神科 数学 几何学
作者
Xiaoling Ma,Liming Xia,Jun Chen,Weijia Wan,Wen Zhou
出处
期刊:European Radiology [Springer Nature]
卷期号:33 (3): 1949-1962 被引量:39
标识
DOI:10.1007/s00330-022-09153-z
摘要

To develop and validate a deep learning (DL) signature for predicting lymph node (LN) metastasis in patients with lung adenocarcinoma.A total of 612 patients with pathologically-confirmed lung adenocarcinoma were retrospectively enrolled and were randomly divided into training cohort (n = 489) and internal validation cohort (n = 123). Besides, 108 patients were enrolled and constituted an independent test cohort (n = 108). Patients' clinical characteristics and CT semantic features were collected. The radiomics features were derived from contrast-enhanced CT images. The clinical-semantic model and radiomics signature were built to predict LN metastasis. Furthermore, Swin Transformer was adopted to develop a DL signature predictive of LN metastasis. Model performance was evaluated by area under the receiver operating characteristic curve (AUC), sensitivity, specificity, calibration curve, and decision curve analysis. The comparisons of AUC were conducted by the DeLong test.The proposed DL signature yielded an AUC of 0.948-0.961 across all three cohorts, significantly superior to both clinical-semantic model and radiomics signature (all p < 0.05). The calibration curves show that DL signature predicted probabilities fit well the actual observed probabilities of LN metastasis. DL signature gained a higher net benefit than both clinical-semantic model and radiomics signature. The incorporation of radiomics signature or clinical-semantic risk predictors failed to reveal an incremental value over the DL signature.The proposed DL signature based on Swin Transformer achieved a promising performance in predicting LN metastasis and could confer important information in noninvasive mediastinal LN staging and individualized therapeutic options.• Accurate prediction for lymph node metastasis is crucial to formulate individualized therapeutic options for patients with lung adenocarcinoma. • The deep learning signature yielded an AUC of 0.948-0.961 across all three cohorts in predicting lymph node metastasis, superior to both radiomics signature and clinical-semantic model. • The incorporation of radiomics signature or clinical-semantic risk predictors into deep learning signature failed to reveal an incremental value over deep learning signature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助温暖的问寒采纳,获得30
1秒前
古德猫宁完成签到,获得积分10
1秒前
开口笑发布了新的文献求助10
2秒前
斯文败类应助崛起之邦采纳,获得30
2秒前
李健应助感性的若云采纳,获得10
2秒前
abc发布了新的文献求助10
2秒前
Akim应助东方浩漫采纳,获得10
3秒前
英吉利25发布了新的文献求助30
3秒前
加贝峥发布了新的文献求助10
4秒前
不安之桃完成签到,获得积分10
4秒前
小二郎应助柳絮采纳,获得10
4秒前
研友_VZG7GZ应助七个小矮人采纳,获得10
4秒前
4秒前
Scout发布了新的文献求助10
4秒前
5秒前
6秒前
6秒前
我爱学习发布了新的文献求助10
7秒前
7秒前
yu应助小金采纳,获得10
7秒前
cxrrabbit发布了新的文献求助10
8秒前
传奇3应助刘恋采纳,获得10
8秒前
8秒前
高高的起眸完成签到,获得积分10
8秒前
徐1完成签到 ,获得积分10
8秒前
lu完成签到,获得积分20
8秒前
9秒前
wwwww完成签到,获得积分10
9秒前
浮游应助陆倩采纳,获得10
9秒前
科研通AI6应助陆倩采纳,获得10
9秒前
9秒前
10秒前
10秒前
叶雨双发布了新的文献求助10
10秒前
10秒前
11秒前
青稞人完成签到,获得积分10
11秒前
11秒前
ccm发布了新的文献求助30
11秒前
GUOLINWEI完成签到,获得积分20
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
量子光学理论与实验技术 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5329687
求助须知:如何正确求助?哪些是违规求助? 4469177
关于积分的说明 13908540
捐赠科研通 4362336
什么是DOI,文献DOI怎么找? 2396264
邀请新用户注册赠送积分活动 1389749
关于科研通互助平台的介绍 1360566