已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development and validation of a deep learning signature for predicting lymph node metastasis in lung adenocarcinoma: comparison with radiomics signature and clinical-semantic model

医学 签名(拓扑) 神经组阅片室 无线电技术 淋巴结转移 临床实习 腺癌 转移 介入放射学 放射科 淋巴结 病理 人工智能 内科学 计算机科学 癌症 神经学 家庭医学 精神科 数学 几何学
作者
Xiaoling Ma,Liming Xia,Jun Chen,Weijia Wan,Wen Zhou
出处
期刊:European Radiology [Springer Nature]
卷期号:33 (3): 1949-1962 被引量:52
标识
DOI:10.1007/s00330-022-09153-z
摘要

To develop and validate a deep learning (DL) signature for predicting lymph node (LN) metastasis in patients with lung adenocarcinoma.A total of 612 patients with pathologically-confirmed lung adenocarcinoma were retrospectively enrolled and were randomly divided into training cohort (n = 489) and internal validation cohort (n = 123). Besides, 108 patients were enrolled and constituted an independent test cohort (n = 108). Patients' clinical characteristics and CT semantic features were collected. The radiomics features were derived from contrast-enhanced CT images. The clinical-semantic model and radiomics signature were built to predict LN metastasis. Furthermore, Swin Transformer was adopted to develop a DL signature predictive of LN metastasis. Model performance was evaluated by area under the receiver operating characteristic curve (AUC), sensitivity, specificity, calibration curve, and decision curve analysis. The comparisons of AUC were conducted by the DeLong test.The proposed DL signature yielded an AUC of 0.948-0.961 across all three cohorts, significantly superior to both clinical-semantic model and radiomics signature (all p < 0.05). The calibration curves show that DL signature predicted probabilities fit well the actual observed probabilities of LN metastasis. DL signature gained a higher net benefit than both clinical-semantic model and radiomics signature. The incorporation of radiomics signature or clinical-semantic risk predictors failed to reveal an incremental value over the DL signature.The proposed DL signature based on Swin Transformer achieved a promising performance in predicting LN metastasis and could confer important information in noninvasive mediastinal LN staging and individualized therapeutic options.• Accurate prediction for lymph node metastasis is crucial to formulate individualized therapeutic options for patients with lung adenocarcinoma. • The deep learning signature yielded an AUC of 0.948-0.961 across all three cohorts in predicting lymph node metastasis, superior to both radiomics signature and clinical-semantic model. • The incorporation of radiomics signature or clinical-semantic risk predictors into deep learning signature failed to reveal an incremental value over deep learning signature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Panther完成签到,获得积分10
1秒前
闵凝竹完成签到 ,获得积分0
2秒前
祈愿完成签到 ,获得积分10
5秒前
xyz完成签到 ,获得积分10
6秒前
6秒前
憨憨的跳跳完成签到 ,获得积分10
6秒前
科研通AI2S应助优美紫槐采纳,获得10
7秒前
11秒前
舍得完成签到,获得积分10
15秒前
ray发布了新的文献求助10
17秒前
大方的自行车完成签到,获得积分10
18秒前
xxh完成签到,获得积分10
19秒前
李健应助医研采纳,获得10
19秒前
20秒前
一一完成签到 ,获得积分10
20秒前
20秒前
远山完成签到 ,获得积分10
20秒前
22秒前
xxh发布了新的文献求助10
23秒前
只如初完成签到 ,获得积分10
24秒前
无情的冰香完成签到 ,获得积分10
27秒前
传奇3应助ray采纳,获得10
27秒前
28秒前
30秒前
Jojo完成签到 ,获得积分10
30秒前
orixero应助yuanyuan采纳,获得10
31秒前
赘婿应助背后的机器猫采纳,获得10
31秒前
Yanjiakun发布了新的文献求助30
34秒前
34秒前
小肖完成签到 ,获得积分10
34秒前
35秒前
科研通AI6应助西西采纳,获得10
35秒前
37秒前
杨憨憨发布了新的文献求助10
38秒前
39秒前
括弧发布了新的文献求助10
40秒前
优美紫槐发布了新的文献求助10
40秒前
41秒前
43秒前
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599588
求助须知:如何正确求助?哪些是违规求助? 4685339
关于积分的说明 14838367
捐赠科研通 4669426
什么是DOI,文献DOI怎么找? 2538128
邀请新用户注册赠送积分活动 1505495
关于科研通互助平台的介绍 1470868