Development and validation of a deep learning signature for predicting lymph node metastasis in lung adenocarcinoma: comparison with radiomics signature and clinical-semantic model

医学 签名(拓扑) 神经组阅片室 无线电技术 淋巴结转移 临床实习 腺癌 转移 介入放射学 放射科 淋巴结 病理 人工智能 内科学 计算机科学 癌症 神经学 家庭医学 精神科 数学 几何学
作者
Xiaoling Ma,Liming Xia,Jun Chen,Weijia Wan,Wen Zhou
出处
期刊:European Radiology [Springer Nature]
卷期号:33 (3): 1949-1962 被引量:27
标识
DOI:10.1007/s00330-022-09153-z
摘要

To develop and validate a deep learning (DL) signature for predicting lymph node (LN) metastasis in patients with lung adenocarcinoma.A total of 612 patients with pathologically-confirmed lung adenocarcinoma were retrospectively enrolled and were randomly divided into training cohort (n = 489) and internal validation cohort (n = 123). Besides, 108 patients were enrolled and constituted an independent test cohort (n = 108). Patients' clinical characteristics and CT semantic features were collected. The radiomics features were derived from contrast-enhanced CT images. The clinical-semantic model and radiomics signature were built to predict LN metastasis. Furthermore, Swin Transformer was adopted to develop a DL signature predictive of LN metastasis. Model performance was evaluated by area under the receiver operating characteristic curve (AUC), sensitivity, specificity, calibration curve, and decision curve analysis. The comparisons of AUC were conducted by the DeLong test.The proposed DL signature yielded an AUC of 0.948-0.961 across all three cohorts, significantly superior to both clinical-semantic model and radiomics signature (all p < 0.05). The calibration curves show that DL signature predicted probabilities fit well the actual observed probabilities of LN metastasis. DL signature gained a higher net benefit than both clinical-semantic model and radiomics signature. The incorporation of radiomics signature or clinical-semantic risk predictors failed to reveal an incremental value over the DL signature.The proposed DL signature based on Swin Transformer achieved a promising performance in predicting LN metastasis and could confer important information in noninvasive mediastinal LN staging and individualized therapeutic options.• Accurate prediction for lymph node metastasis is crucial to formulate individualized therapeutic options for patients with lung adenocarcinoma. • The deep learning signature yielded an AUC of 0.948-0.961 across all three cohorts in predicting lymph node metastasis, superior to both radiomics signature and clinical-semantic model. • The incorporation of radiomics signature or clinical-semantic risk predictors into deep learning signature failed to reveal an incremental value over deep learning signature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
mariawang发布了新的文献求助30
2秒前
濮阳傲易完成签到,获得积分10
2秒前
4秒前
4秒前
b2v完成签到 ,获得积分10
5秒前
5秒前
柚子茶完成签到 ,获得积分10
5秒前
5秒前
精明的迎松应助Takagi采纳,获得10
6秒前
米线ing发布了新的文献求助10
7秒前
Jasper应助渣渣采纳,获得10
7秒前
cheng完成签到,获得积分10
8秒前
QI发布了新的文献求助10
8秒前
xxzhao发布了新的文献求助10
9秒前
研友_nPoWNL完成签到,获得积分10
11秒前
啦啦啦啦啦完成签到,获得积分10
13秒前
14秒前
化云完成签到,获得积分0
15秒前
EM发布了新的文献求助10
15秒前
15秒前
小小王完成签到 ,获得积分10
16秒前
FashionBoy应助啵啵只因采纳,获得10
17秒前
17秒前
爆米花应助一杯橙采纳,获得10
17秒前
渣渣完成签到,获得积分10
18秒前
CodeCraft应助卓隶采纳,获得30
18秒前
平淡小土豆完成签到,获得积分10
19秒前
渣渣发布了新的文献求助10
21秒前
ding应助LM采纳,获得10
21秒前
21秒前
22秒前
顺顺安完成签到,获得积分10
22秒前
李爱国应助米线ing采纳,获得10
23秒前
24秒前
赘婿应助cpudkq采纳,获得10
24秒前
ding应助失眠白曼采纳,获得10
24秒前
happyboy2008完成签到,获得积分10
24秒前
25秒前
刘佳发布了新的文献求助10
25秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Radon as a natural tracer to study transport processes in a karst system. An example in the Swiss Jura 500
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3225615
求助须知:如何正确求助?哪些是违规求助? 2874470
关于积分的说明 8186539
捐赠科研通 2541525
什么是DOI,文献DOI怎么找? 1372190
科研通“疑难数据库(出版商)”最低求助积分说明 646441
邀请新用户注册赠送积分活动 620732