Development and validation of a deep learning signature for predicting lymph node metastasis in lung adenocarcinoma: comparison with radiomics signature and clinical-semantic model

医学 签名(拓扑) 神经组阅片室 无线电技术 淋巴结转移 临床实习 腺癌 转移 介入放射学 放射科 淋巴结 病理 人工智能 内科学 计算机科学 癌症 神经学 家庭医学 精神科 数学 几何学
作者
Xiaoling Ma,Liming Xia,Jun Chen,Weijia Wan,Wen Zhou
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:33 (3): 1949-1962 被引量:32
标识
DOI:10.1007/s00330-022-09153-z
摘要

To develop and validate a deep learning (DL) signature for predicting lymph node (LN) metastasis in patients with lung adenocarcinoma.A total of 612 patients with pathologically-confirmed lung adenocarcinoma were retrospectively enrolled and were randomly divided into training cohort (n = 489) and internal validation cohort (n = 123). Besides, 108 patients were enrolled and constituted an independent test cohort (n = 108). Patients' clinical characteristics and CT semantic features were collected. The radiomics features were derived from contrast-enhanced CT images. The clinical-semantic model and radiomics signature were built to predict LN metastasis. Furthermore, Swin Transformer was adopted to develop a DL signature predictive of LN metastasis. Model performance was evaluated by area under the receiver operating characteristic curve (AUC), sensitivity, specificity, calibration curve, and decision curve analysis. The comparisons of AUC were conducted by the DeLong test.The proposed DL signature yielded an AUC of 0.948-0.961 across all three cohorts, significantly superior to both clinical-semantic model and radiomics signature (all p < 0.05). The calibration curves show that DL signature predicted probabilities fit well the actual observed probabilities of LN metastasis. DL signature gained a higher net benefit than both clinical-semantic model and radiomics signature. The incorporation of radiomics signature or clinical-semantic risk predictors failed to reveal an incremental value over the DL signature.The proposed DL signature based on Swin Transformer achieved a promising performance in predicting LN metastasis and could confer important information in noninvasive mediastinal LN staging and individualized therapeutic options.• Accurate prediction for lymph node metastasis is crucial to formulate individualized therapeutic options for patients with lung adenocarcinoma. • The deep learning signature yielded an AUC of 0.948-0.961 across all three cohorts in predicting lymph node metastasis, superior to both radiomics signature and clinical-semantic model. • The incorporation of radiomics signature or clinical-semantic risk predictors into deep learning signature failed to reveal an incremental value over deep learning signature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LEE123完成签到,获得积分10
1秒前
cdragon完成签到,获得积分10
1秒前
QQ发布了新的文献求助10
2秒前
DUN发布了新的文献求助10
2秒前
伍六七完成签到,获得积分10
3秒前
Hello应助无医采纳,获得10
3秒前
舒适的雁风完成签到,获得积分10
5秒前
性静H情逸完成签到,获得积分10
6秒前
球宝完成签到,获得积分10
6秒前
Ava应助XieQinxie采纳,获得10
6秒前
Cyrus完成签到,获得积分10
7秒前
就滴滴勾儿完成签到,获得积分10
7秒前
章鱼小丸子完成签到 ,获得积分10
7秒前
7秒前
加油少年完成签到,获得积分10
8秒前
小蘑菇应助zhangfan采纳,获得10
8秒前
Sean完成签到,获得积分10
8秒前
天天快乐应助hetao286采纳,获得10
9秒前
十四完成签到 ,获得积分10
9秒前
蒙蒙完成签到 ,获得积分10
9秒前
橙子完成签到 ,获得积分10
10秒前
jkaaa完成签到,获得积分10
10秒前
shi0331完成签到,获得积分10
11秒前
11秒前
阿强哥20241101完成签到,获得积分10
12秒前
迷人芫完成签到,获得积分10
12秒前
12秒前
机会完成签到,获得积分10
12秒前
阳光绿柏完成签到,获得积分10
12秒前
DUN完成签到,获得积分10
13秒前
13秒前
14秒前
QQ完成签到,获得积分10
14秒前
打卡下班完成签到,获得积分0
14秒前
MiYou完成签到,获得积分10
15秒前
王菲完成签到,获得积分10
15秒前
unfeeling8完成签到 ,获得积分10
16秒前
无医发布了新的文献求助10
16秒前
敏感笑槐完成签到 ,获得积分10
16秒前
悦耳觅夏完成签到 ,获得积分10
17秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008933
求助须知:如何正确求助?哪些是违规求助? 3548669
关于积分的说明 11299538
捐赠科研通 3283228
什么是DOI,文献DOI怎么找? 1810311
邀请新用户注册赠送积分活动 886034
科研通“疑难数据库(出版商)”最低求助积分说明 811259