Hydrophobicity-aerophilicity effect boosting efficient CO2 photoreduction in graphitic carbon nitride modified with fluorine-containing groups

石墨氮化碳 氮化碳 化学 Boosting(机器学习) 光催化 化学工程 氮化物 碳纤维 催化作用 光化学 材料科学 有机化学 复合数 计算机科学 复合材料 工程类 机器学习 图层(电子)
作者
Fang Li,Xiaoyang Yue,Lei Cheng,Jiajie Fan,Quanjun Xiang
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:452: 139463-139463 被引量:32
标识
DOI:10.1016/j.cej.2022.139463
摘要

Inspired by the lotus leaf effect, constructing a hydrophobic surface to endow photocatalysts with underwater aerophilicity, is an effective measure to improve the accessibility of CO2 on the catalyst surface during CO2 photoreduction in the liquid phase. Unfortunately, the aerophilic advantages of the material cannot be fully exploited with the extremely low solubility of CO2 in water. Thus, applying the “hydrophobicity-aerophilicity effect” to gaseous CO2 atmosphere, that is, proving that the hydrophobic material has aerophilic effect in air, has become a challenge. Herein, a hydrophobic graphitic carbon nitride (g-C3N4) photocatalyst modified by CF2 groups (CF2-TCN) is developed to enhance the aerophilicity of the CF2-TCN in air. A theoretical model of the gas-phase “hydrophobicity-aerophilicity effect” and the corresponding theoretical support are presented. Experimental characterizations demonstrate that the grafted CF2 groups create a hydrophobic surface for CF2-TCN, acting as a gas transport layer and enhancing the aerophilicity of CF2-TCN. Theoretical calculations further explain that the strong electronegativity of F atoms in CF2 groups affects the electron cloud distribution of g-C3N4, facilitating the adsorption and activation of CO2 by CF2-TCN. Furthermore, the electron-withdrawing effect of F atoms efficiently extracts electrons, accelerating the intramolecular charge transfer. Benefiting from enhanced aerophilicity and improved electron transfer, the output of CO and CH4 by CF2-TCN are 30.94 and 7.39 μmol·h−1·g−1 without any sacrificial agents, far exceeding that of bulk g-C3N4 (BCN) by 5.54 and 18.95 times, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坦率的千风完成签到,获得积分20
刚刚
3秒前
Vivian发布了新的文献求助10
3秒前
3秒前
兔子精完成签到 ,获得积分10
4秒前
张先生发布了新的文献求助10
6秒前
fqf完成签到,获得积分20
6秒前
顾矜应助何东玲采纳,获得10
6秒前
小星完成签到 ,获得积分10
7秒前
张张发布了新的文献求助10
8秒前
9秒前
酷波er应助代代采纳,获得10
9秒前
付艳完成签到,获得积分10
10秒前
浮游应助科研通管家采纳,获得10
13秒前
星辰大海应助科研通管家采纳,获得10
13秒前
NexusExplorer应助科研通管家采纳,获得10
13秒前
kister应助科研通管家采纳,获得60
13秒前
在水一方应助科研通管家采纳,获得10
13秒前
852应助科研通管家采纳,获得10
13秒前
Lucas应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
今后应助科研通管家采纳,获得30
13秒前
浮游应助科研通管家采纳,获得10
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
13秒前
changping应助科研通管家采纳,获得200
13秒前
天天快乐应助科研通管家采纳,获得10
14秒前
嘿嘿应助科研通管家采纳,获得10
14秒前
斯文败类应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
一只小船完成签到,获得积分10
14秒前
乐乐应助云宇采纳,获得10
15秒前
zmh发布了新的文献求助10
15秒前
愤怒的小甜瓜完成签到 ,获得积分10
15秒前
16秒前
16秒前
whoknowsname发布了新的文献求助10
17秒前
xiaohu完成签到 ,获得积分20
17秒前
天真惜天完成签到,获得积分20
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299249
求助须知:如何正确求助?哪些是违规求助? 4447475
关于积分的说明 13842802
捐赠科研通 4333098
什么是DOI,文献DOI怎么找? 2378518
邀请新用户注册赠送积分活动 1373819
关于科研通互助平台的介绍 1339343