Towards Semi-Supervised Segmentation of Retinal Fundus Images via Self-Training

人工智能 计算机科学 眼底(子宫) 视盘 分割 视杯(胚胎学) 图像分割 青光眼 条件随机场 模式识别(心理学) 计算机视觉 深度学习 水准点(测量) 眼科 医学 基因 眼睛发育 大地测量学 表型 化学 地理 生物化学
作者
Jianzhi Deng,Fengming Zhang,Shuiwang Li,Jindi Bao
标识
DOI:10.1109/prml56267.2022.9882204
摘要

Glaucoma is an eye disease that may cause blindness by damaging the optic nerve. The optic cup-to-disc ratio is one of the most important criteria in the diagnosis of glaucoma. However, accurately partitioning a retinal fundus image into optic cup and optic disc regions is crucial to precisely estimating the cup-to-disc ratio automatically. With the emergence of Deep Neural Networks (DNN) and available large-scale manually labeled training data, generic image segmentation has made great progress in recent years. However, large-scale well-labeled medical images are usually expensive and difficult to obtain. To address this problem, in this paper we propose a semi-supervised learning method for retinal fundus image segmentation via self-training based on the MR-Net. The proposed approach uses a self-training semi-supervised learning framework to generate pseudo-labels for unlabeled images. To improve the accuracy of the pseudo-labels, a dense conditional random field is introduced to refine the generated pseudo-labels during the self-training process. Experimental results show that the proposed method remarkably achieves state-of-the-art performance on the RIGA benchmark using only 50% of the annotated data for training, well alleviating the shortage of annotated training data in retinal fundus image segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
华仔应助卢莹采纳,获得10
刚刚
一口蛋黄苏完成签到,获得积分10
2秒前
2秒前
SMLW发布了新的文献求助10
2秒前
2秒前
hugdoggy发布了新的文献求助10
2秒前
豆豆完成签到 ,获得积分10
3秒前
laallaall应助Loik采纳,获得10
3秒前
吨吨发布了新的文献求助10
4秒前
4秒前
5秒前
研友_n0kYwL完成签到,获得积分10
5秒前
电闪发布了新的文献求助10
6秒前
ELITOmiko发布了新的文献求助10
6秒前
Tokgo完成签到,获得积分10
7秒前
9秒前
Kurt发布了新的文献求助10
9秒前
11秒前
11秒前
年轻访彤发布了新的文献求助10
11秒前
mystryjoker发布了新的文献求助30
12秒前
领导范儿应助kunkun小王采纳,获得10
13秒前
13秒前
英俊的铭应助yizhi猫采纳,获得10
13秒前
Celine完成签到,获得积分10
14秒前
瘦瘦金针菇关注了科研通微信公众号
14秒前
明理小土豆完成签到,获得积分10
16秒前
晓湫发布了新的文献求助10
17秒前
喵呜完成签到 ,获得积分10
17秒前
无限的隶发布了新的文献求助10
18秒前
18秒前
haokeyan发布了新的文献求助10
19秒前
19秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
深情安青应助Reyyyy采纳,获得10
20秒前
糟糕的愚志完成签到,获得积分10
20秒前
叮当发布了新的文献求助20
21秒前
mystryjoker完成签到,获得积分10
21秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961103
求助须知:如何正确求助?哪些是违规求助? 3507388
关于积分的说明 11135834
捐赠科研通 3239867
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872400
科研通“疑难数据库(出版商)”最低求助积分说明 803152