3D Vision Using Multiple Structured Light-Based Kinect Depth Cameras

计算机科学 计算机视觉 深度图 人工智能 干扰(通信) 图像传感器 对象(语法) 结构光 深度知觉 图像(数学) 频道(广播) 感知 计算机网络 生物 神经科学
作者
Tanaji Umaji Kamble,S. P. Mahajan
出处
期刊:International Journal of Image and Graphics [World Scientific]
卷期号:24 (01) 被引量:7
标识
DOI:10.1142/s0219467824500013
摘要

Real-time 3D scanning of a scene or object using multiple depth cameras is often required in many applications but is still a challenging task for the computer vision community, especially when the object or scene is partially occluded and dynamic. If active depth sensors are used in this case, their resulting depth map quality gets degraded due to interference between active radiations from each depth sensor. Passive 3D sensors like stereo cameras can avoid the issue of interference as they do not emit any active radiation, but they face correspondence problems. Since releasing the commodity depth sensor Microsoft Kinect, researchers are getting more interested in active depth-sensing. However, Kinect sensors have some easily noticeable limitations concerning 3D reconstruction such as: they can provide depth maps for a limited range, their field of view is restricted and holes are observed in the depth map due to occlusion. The above-mentioned limitations can be overcome if multiple Kinect sensors are used simultaneously instead of a single Kinect sensor. Still, the challenge here is to avoid interference between these sensors. We present a comprehensive review of possible solutions to avoid interference between multiple Kinect sensors. Furthermore, we introduce the Kinect technology in detail along with applications where multiple Kinect sensors are used in the literature. We expect that this paper will be helpful to the researchers who want to use multiple Kinect sensors in sharing the workplace in their research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123456qi完成签到,获得积分10
1秒前
山林发布了新的文献求助10
3秒前
球球发布了新的文献求助10
4秒前
慕容莳阆完成签到,获得积分10
5秒前
5秒前
aaaaaa发布了新的文献求助10
5秒前
科研通AI2S应助gumausi采纳,获得10
5秒前
6秒前
7秒前
StarRiver完成签到,获得积分10
8秒前
愉快乌发布了新的文献求助10
9秒前
应万言完成签到,获得积分0
11秒前
14秒前
stq1997完成签到,获得积分20
14秒前
夏洛完成签到,获得积分10
14秒前
15秒前
16秒前
山林完成签到,获得积分10
17秒前
wanci应助lll采纳,获得10
17秒前
K珑发布了新的文献求助10
18秒前
19秒前
19秒前
夏洛发布了新的文献求助10
20秒前
21秒前
24秒前
monkey发布了新的文献求助30
25秒前
杨哈哈发布了新的文献求助10
25秒前
26秒前
27秒前
Faith完成签到,获得积分10
28秒前
29秒前
Eskimo发布了新的文献求助30
30秒前
kiriya发布了新的文献求助10
31秒前
lll发布了新的文献求助10
31秒前
32秒前
yaoooooo应助华仔采纳,获得30
34秒前
美丽乾发布了新的文献求助10
35秒前
烟花应助monkey采纳,获得10
36秒前
研友_Lw7MKL完成签到,获得积分10
36秒前
李爱国应助解青文采纳,获得10
36秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314062
求助须知:如何正确求助?哪些是违规求助? 2946490
关于积分的说明 8530274
捐赠科研通 2622160
什么是DOI,文献DOI怎么找? 1434341
科研通“疑难数据库(出版商)”最低求助积分说明 665242
邀请新用户注册赠送积分活动 650804