Target recovery of the economic system based on the target reinforcement path method

弹性(材料科学) 计算机科学 过程(计算) 路径(计算) 集合(抽象数据类型) 非线性系统 心理弹性 复杂系统 数学优化 人工智能 数学 心理学 物理 量子力学 操作系统 心理治疗师 热力学 程序设计语言
作者
Ze Wang,Ning Ma,Leyang Xue,Yukun Song,Zhigang Wang,Renwu Tang,Zengru Di
出处
期刊:Chaos [American Institute of Physics]
卷期号:32 (9) 被引量:1
标识
DOI:10.1063/5.0097175
摘要

An effective and stable operation of an economic system leads to a prosperous society and sustainable world development. Unfortunately, the system faces inevitable perturbations of extreme events and is frequently damaged. To maintain the system's stability, recovering its damaged functionality is essential and is complementary to strengthening its resilience and forecasting extreme events. This paper proposes a target recovery method based on network and economic equilibrium theories to defend the economic system against perturbations characterized as localized attacks. This novel method stimulates a set of economic sectors that mutually reinforce damaged economic sectors and is intuitively named the target reinforcement path (TRP) method. Developing a nonlinear dynamic model that simulates the economic system's operation after being perturbed by a localized attack and recovering based on a target recovery method, we compute the relaxation time for this process to quantify the method's efficiency. Furthermore, we adopt a rank aggregation method to comprehensively measure the method's efficiency by studying the target recovery of three country-level economic systems (China, India, and Japan) for 73 different regional attack scenarios. Through a comparative analysis of the TRP method and three other classic methods, the TRP method is shown to be more effective and less costly. Applicatively, the proposed method exhibits the potential to recover other vital complex systems with spontaneous recovery ability, such as immune, neurological, and ecological systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
login发布了新的文献求助10
刚刚
刚刚
星野爱完成签到,获得积分10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
斯文败类应助宁宁采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得30
1秒前
1秒前
1秒前
烟花应助gxmu6322采纳,获得10
1秒前
1秒前
研友_VZG7GZ应助体贴的青烟采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
大个应助坤坤爱文献采纳,获得10
2秒前
AU发布了新的文献求助10
3秒前
wang发布了新的文献求助10
4秒前
4秒前
我是大美女完成签到,获得积分10
4秒前
晾猫人完成签到,获得积分10
5秒前
foxp3发布了新的文献求助10
5秒前
5秒前
5秒前
en发布了新的文献求助10
6秒前
在水一方应助坚定芷烟采纳,获得10
6秒前
废寝忘食完成签到,获得积分10
6秒前
ylh发布了新的文献求助10
6秒前
6秒前
Quinn发布了新的文献求助10
8秒前
Yukwah发布了新的文献求助20
8秒前
9秒前
10秒前
诗亭发布了新的文献求助10
10秒前
深情安青应助执着夏岚采纳,获得10
11秒前
11秒前
自由凌波发布了新的文献求助10
11秒前
12秒前
wlp鹏完成签到,获得积分10
12秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123309
求助须知:如何正确求助?哪些是违规求助? 2773824
关于积分的说明 7719656
捐赠科研通 2429529
什么是DOI,文献DOI怎么找? 1290348
科研通“疑难数据库(出版商)”最低求助积分说明 621803
版权声明 600251