EPT-Net: Edge Perception Transformer for 3D Medical Image Segmentation

计算机科学 人工智能 分割 卷积神经网络 图像分割 变压器 编码器 计算机视觉 医学影像学 GSM演进的增强数据速率 模式识别(心理学) 工程类 操作系统 电气工程 电压
作者
Jingyi Yang,Licheng Jiao,Ronghua Shang,Xu Liu,Ruiyang Li,Longchang Xu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (11): 3229-3243 被引量:16
标识
DOI:10.1109/tmi.2023.3278461
摘要

The convolutional neural network has achieved remarkable results in most medical image seg- mentation applications. However, the intrinsic locality of convolution operation has limitations in modeling the long-range dependency. Although the Transformer designed for sequence-to-sequence global prediction was born to solve this problem, it may lead to limited positioning capability due to insufficient low-level detail features. Moreover, low-level features have rich fine-grained information, which greatly impacts edge segmentation decisions of different organs. However, a simple CNN module is difficult to capture the edge information in fine-grained features, and the computational power and memory consumed in processing high-resolution 3D features are costly. This paper proposes an encoder-decoder network that effectively combines edge perception and Transformer structure to segment medical images accurately, called EPT-Net. Under this framework, this paper proposes a Dual Position Transformer to enhance the 3D spatial positioning ability effectively. In addition, as low-level features contain detailed information, we conduct an Edge Weight Guidance module to extract edge information by minimizing the edge information function without adding network parameters. Furthermore, we verified the effectiveness of the proposed method on three datasets, including SegTHOR 2019, Multi-Atlas Labeling Beyond the Cranial Vault and the re-labeled KiTS19 dataset called KiTS19-M by us. The experimental results show that EPT-Net has significantly improved compared with the state-of-the-art medical image segmentation method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
帅气的小翟完成签到,获得积分10
1秒前
fanature发布了新的文献求助80
2秒前
2秒前
2秒前
滴滴发布了新的文献求助10
2秒前
3秒前
Jasper应助怕孤独的根号三采纳,获得10
4秒前
Yeong完成签到,获得积分10
5秒前
董舒婷发布了新的文献求助10
5秒前
善良的高烽完成签到 ,获得积分10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
犹犹豫豫发布了新的文献求助10
6秒前
rui发布了新的文献求助10
7秒前
研友_Bn2Pl8发布了新的文献求助30
7秒前
科研通AI6应助Jere采纳,获得20
7秒前
珊明治发布了新的文献求助10
7秒前
ZXH完成签到 ,获得积分10
8秒前
科研通AI6应助结实天荷采纳,获得10
8秒前
9秒前
9秒前
情怀应助Smilingjht采纳,获得10
10秒前
英姑应助夜染采纳,获得10
10秒前
luluyang发布了新的文献求助10
11秒前
我是老大应助席碧采纳,获得20
12秒前
xiongyh10完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
FG发布了新的文献求助10
13秒前
陈艳林发布了新的文献求助10
13秒前
CipherSage应助fanature采纳,获得10
13秒前
外向烤鸡完成签到,获得积分10
14秒前
北枳完成签到,获得积分20
15秒前
16秒前
孝顺的紫完成签到 ,获得积分10
16秒前
研友_Z7myEL发布了新的文献求助10
17秒前
静水流深完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660407
求助须知:如何正确求助?哪些是违规求助? 4833752
关于积分的说明 15090568
捐赠科研通 4819045
什么是DOI,文献DOI怎么找? 2578992
邀请新用户注册赠送积分活动 1533551
关于科研通互助平台的介绍 1492304