EPT-Net: Edge Perception Transformer for 3D Medical Image Segmentation

计算机科学 人工智能 分割 卷积神经网络 图像分割 变压器 编码器 计算机视觉 医学影像学 GSM演进的增强数据速率 模式识别(心理学) 工程类 操作系统 电气工程 电压
作者
Jingyi Yang,Licheng Jiao,Ronghua Shang,Xu Liu,Ruiyang Li,Longchang Xu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (11): 3229-3243 被引量:16
标识
DOI:10.1109/tmi.2023.3278461
摘要

The convolutional neural network has achieved remarkable results in most medical image seg- mentation applications. However, the intrinsic locality of convolution operation has limitations in modeling the long-range dependency. Although the Transformer designed for sequence-to-sequence global prediction was born to solve this problem, it may lead to limited positioning capability due to insufficient low-level detail features. Moreover, low-level features have rich fine-grained information, which greatly impacts edge segmentation decisions of different organs. However, a simple CNN module is difficult to capture the edge information in fine-grained features, and the computational power and memory consumed in processing high-resolution 3D features are costly. This paper proposes an encoder-decoder network that effectively combines edge perception and Transformer structure to segment medical images accurately, called EPT-Net. Under this framework, this paper proposes a Dual Position Transformer to enhance the 3D spatial positioning ability effectively. In addition, as low-level features contain detailed information, we conduct an Edge Weight Guidance module to extract edge information by minimizing the edge information function without adding network parameters. Furthermore, we verified the effectiveness of the proposed method on three datasets, including SegTHOR 2019, Multi-Atlas Labeling Beyond the Cranial Vault and the re-labeled KiTS19 dataset called KiTS19-M by us. The experimental results show that EPT-Net has significantly improved compared with the state-of-the-art medical image segmentation method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
英姑应助袁盼旋采纳,获得30
4秒前
王耀发布了新的文献求助10
5秒前
阔达的秀发完成签到,获得积分10
6秒前
wanna完成签到,获得积分10
7秒前
7秒前
7秒前
11秒前
11秒前
万能图书馆应助陈sir采纳,获得10
12秒前
今后应助wjm采纳,获得10
12秒前
熙茵完成签到 ,获得积分10
14秒前
彭于晏应助麦冬冬采纳,获得10
14秒前
8888拉发布了新的文献求助10
16秒前
郡周发布了新的文献求助10
17秒前
kk完成签到 ,获得积分10
19秒前
21秒前
21秒前
李爱国应助ASSVD采纳,获得10
21秒前
21秒前
22秒前
闵安雁发布了新的文献求助10
26秒前
鸡蛋布丁完成签到,获得积分10
26秒前
26秒前
陈sir发布了新的文献求助10
27秒前
感谢雪人不怕火转发科研通微信,获得积分50
27秒前
27秒前
wzy发布了新的文献求助10
27秒前
郡周完成签到,获得积分10
28秒前
yzy发布了新的文献求助10
31秒前
感谢MinamiKotori转发科研通微信,获得积分50
31秒前
semigreen完成签到 ,获得积分10
31秒前
感谢阿美转发科研通微信,获得积分50
36秒前
科研通AI2S应助Bright24采纳,获得10
40秒前
40秒前
山水完成签到,获得积分10
41秒前
感谢RoseTaurus转发科研通微信,获得积分50
41秒前
41秒前
45秒前
Dani发布了新的文献求助10
45秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3238520
求助须知:如何正确求助?哪些是违规求助? 2883916
关于积分的说明 8231931
捐赠科研通 2551852
什么是DOI,文献DOI怎么找? 1380294
科研通“疑难数据库(出版商)”最低求助积分说明 649001
邀请新用户注册赠送积分活动 624678