Graph Self-Supervised Learning With Application to Brain Networks Analysis

计算机科学 人工智能 自编码 机器学习 监督学习 图形 自闭症谱系障碍 深度学习 半监督学习 分类器(UML) 特征学习 模式识别(心理学) 人工神经网络 自闭症 理论计算机科学 医学 精神科
作者
Guangqi Wen,Peng Cao,Lingwen Liu,Jinzhu Yang,Xizhe Zhang,Fei Wang,Osmar R. Zaı̈ane
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (8): 4154-4165 被引量:5
标识
DOI:10.1109/jbhi.2023.3274531
摘要

The less training data and insufficient supervision limit the performance of the deep supervised models for brain disease diagnosis. It is significant to construct a learning framework that can capture more information in limited data and insufficient supervision. To address these issues, we focus on self-supervised learning and aim to generalize the self-supervised learning to the brain networks, which are non-Euclidean graph data. More specifically, we propose an ensemble masked graph self-supervised framework named BrainGSLs, which incorporates 1) a local topological-aware encoder that takes the partially visible nodes as input and learns these latent representations, 2) a node-edge bi-decoder that reconstructs the masked edges by the representations of both the masked and visible nodes, 3) a signal representation learning module for capturing temporal representations from BOLD signals and 4) a classifier used for the classification. We evaluate our model on three real medical clinical applications: diagnosis of Autism Spectrum Disorder (ASD), diagnosis of Bipolar Disorder (BD) and diagnosis of Major Depressive Disorder (MDD). The results suggest that the proposed self-supervised training has led to remarkable improvement and outperforms state-of-the-art methods. Moreover, our method is able to identify the biomarkers associated with the diseases, which is consistent with the previous studies. We also explore the correlation of these three diseases and find the strong association between ASD and BD. To the best of our knowledge, our work is the first attempt of applying the idea of self-supervised learning with masked autoencoder on the brain network analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
布布给布布的求助进行了留言
刚刚
无花果应助无尽夏采纳,获得10
1秒前
汉堡包应助万信心采纳,获得10
1秒前
2秒前
科目三应助冬瓜采纳,获得20
2秒前
4秒前
小桃子完成签到 ,获得积分10
4秒前
迷路白桃发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
莫名其妙发布了新的文献求助20
5秒前
汉堡包应助JJ采纳,获得10
7秒前
lhl发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
LL发布了新的文献求助10
8秒前
吉祥应助qqqww采纳,获得30
8秒前
JamesPei应助圆圆方方采纳,获得10
8秒前
calendar完成签到,获得积分10
8秒前
9秒前
xxxxx发布了新的文献求助10
10秒前
11秒前
12秒前
我要7甜瓜完成签到 ,获得积分10
13秒前
ys1111完成签到 ,获得积分10
14秒前
guyan发布了新的文献求助10
14秒前
爆米花应助Anny采纳,获得10
15秒前
小月Anna发布了新的文献求助10
16秒前
冷傲香魔完成签到,获得积分20
17秒前
zjy2023完成签到,获得积分10
17秒前
坚强铸海完成签到,获得积分10
18秒前
奔波儿灞发布了新的文献求助10
20秒前
21秒前
几时有发布了新的文献求助30
23秒前
小月Anna完成签到,获得积分10
23秒前
彭于晏应助Ww采纳,获得10
23秒前
田様应助糊涂的勒采纳,获得10
24秒前
ys1111xiao完成签到 ,获得积分10
24秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160172
求助须知:如何正确求助?哪些是违规求助? 2811172
关于积分的说明 7891237
捐赠科研通 2470284
什么是DOI,文献DOI怎么找? 1315398
科研通“疑难数据库(出版商)”最低求助积分说明 630828
版权声明 602022