Graph Self-Supervised Learning With Application to Brain Networks Analysis

计算机科学 人工智能 自编码 机器学习 监督学习 图形 自闭症谱系障碍 深度学习 半监督学习 分类器(UML) 特征学习 模式识别(心理学) 人工神经网络 自闭症 理论计算机科学 医学 精神科
作者
Guangqi Wen,Peng Cao,Lingwen Liu,Jinzhu Yang,Xizhe Zhang,Fei Wang,Osmar R. Zäıane
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (8): 4154-4165 被引量:18
标识
DOI:10.1109/jbhi.2023.3274531
摘要

The less training data and insufficient supervision limit the performance of the deep supervised models for brain disease diagnosis. It is significant to construct a learning framework that can capture more information in limited data and insufficient supervision. To address these issues, we focus on self-supervised learning and aim to generalize the self-supervised learning to the brain networks, which are non-Euclidean graph data. More specifically, we propose an ensemble masked graph self-supervised framework named BrainGSLs, which incorporates 1) a local topological-aware encoder that takes the partially visible nodes as input and learns these latent representations, 2) a node-edge bi-decoder that reconstructs the masked edges by the representations of both the masked and visible nodes, 3) a signal representation learning module for capturing temporal representations from BOLD signals and 4) a classifier used for the classification. We evaluate our model on three real medical clinical applications: diagnosis of Autism Spectrum Disorder (ASD), diagnosis of Bipolar Disorder (BD) and diagnosis of Major Depressive Disorder (MDD). The results suggest that the proposed self-supervised training has led to remarkable improvement and outperforms state-of-the-art methods. Moreover, our method is able to identify the biomarkers associated with the diseases, which is consistent with the previous studies. We also explore the correlation of these three diseases and find the strong association between ASD and BD. To the best of our knowledge, our work is the first attempt of applying the idea of self-supervised learning with masked autoencoder on the brain network analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
superhero完成签到,获得积分10
刚刚
FancyShi发布了新的文献求助10
刚刚
刚刚
刚刚
笨笨翰发布了新的文献求助10
刚刚
汉堡包应助Paradox采纳,获得10
1秒前
1秒前
1秒前
hhh发布了新的文献求助10
1秒前
小黑球完成签到,获得积分10
1秒前
1秒前
hhh完成签到,获得积分10
1秒前
昏睡的蟠桃应助小路采纳,获得50
1秒前
灵巧谷波完成签到,获得积分10
1秒前
孤傲的静脉完成签到 ,获得积分10
2秒前
雪下的地发布了新的文献求助10
2秒前
2秒前
老实幻姬发布了新的文献求助10
2秒前
Q7发布了新的文献求助20
2秒前
2秒前
在水一方应助端庄断秋采纳,获得10
3秒前
和谐的追命完成签到,获得积分10
3秒前
4秒前
zzz完成签到,获得积分10
4秒前
连冷安发布了新的文献求助30
4秒前
坦率的世开完成签到,获得积分10
4秒前
传统的凝天完成签到,获得积分10
4秒前
5秒前
贪玩白开水完成签到,获得积分10
5秒前
5秒前
5秒前
Yichen完成签到,获得积分10
5秒前
贝肯妮发布了新的文献求助10
5秒前
炙热的书竹完成签到,获得积分10
5秒前
优雅幻天完成签到,获得积分10
6秒前
6秒前
6秒前
CodeCraft应助法式千层饼采纳,获得10
7秒前
CipherSage应助Dominic7888采纳,获得20
7秒前
zzz完成签到,获得积分10
7秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009834
求助须知:如何正确求助?哪些是违规求助? 3549753
关于积分的说明 11303647
捐赠科研通 3284309
什么是DOI,文献DOI怎么找? 1810591
邀请新用户注册赠送积分活动 886367
科研通“疑难数据库(出版商)”最低求助积分说明 811406