Label Propagation and Contrastive Regularization for Semisupervised Semantic Segmentation of Remote Sensing Images

计算机科学 分割 人工智能 模式识别(心理学) 特征(语言学) 像素 正规化(语言学) 注释 图像分割 约束(计算机辅助设计) 特征提取 一致性(知识库) 计算机视觉 数学 哲学 语言学 几何学
作者
Zhujun Yang,Zhiyuan Yan,Wenhui Diao,Qiang Zhang,Yuzhuo Kang,Junxi Li,Xinming Li,Xian Sun
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-18 被引量:9
标识
DOI:10.1109/tgrs.2023.3277203
摘要

Remarkable progress based on deep neural networks has been achieved on the semantic segmentation in remote sensing images. However, pixel-level labeling is expensive for remote sensing images. Semi-supervised semantic segmentation becomes an alternative approach to reduce the cost of annotation, and it is crucial to utilize efficiently a large number of unlabeled data. Nevertheless inevitably, there is the unbalanced class distribution between labeled and unlabeled data of remote sensing scene. Existing semi-supervised methods train unlabeled images in isolation from labeled images and only learn reliable pixel pseudo-labels, leading to underutilization of unlabeled images. This article proposes a novel semi-supervised semantic segmentation approach based on label propagation and contrastive regularization for remote sensing images. Specifically, the unlabeled images are augmented by randomly copy-pasting the class regions from labeled images. A prototype feature constraint module is used to enforce the constraint on the pixel features of unlabeled images relying on the prototype features from labeled images, achieving feature alignment on the entire dataset. Furthermore, we present the region contrastive learning module that guides the model to learn feature consistency under different perturbations and compact feature representations over class regions on unlabeled images. Extensive experimental results on multiple remote sensing datasets demonstrate that our proposed approach achieves superior performance compared with state-of-the-art semi-supervised semantic segmentation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ho hou h发布了新的文献求助10
1秒前
李琳赛完成签到,获得积分10
1秒前
僵小柏完成签到,获得积分10
1秒前
JAJ完成签到 ,获得积分10
1秒前
hcsdgf完成签到 ,获得积分10
1秒前
1秒前
2秒前
2秒前
阿超完成签到,获得积分10
2秒前
z1发布了新的文献求助10
2秒前
2秒前
安安完成签到 ,获得积分10
2秒前
3秒前
3秒前
充电宝应助zfp采纳,获得10
3秒前
111发布了新的文献求助10
3秒前
搜集达人应助368DFS采纳,获得10
3秒前
3秒前
竹筏过海应助李琳赛采纳,获得30
4秒前
Tian完成签到 ,获得积分10
4秒前
论文顺利完成签到,获得积分20
4秒前
5秒前
科研通AI5应助诚心淇采纳,获得10
5秒前
anan应助饱满西牛采纳,获得10
5秒前
Lucas应助若水采纳,获得10
5秒前
5秒前
大喜发布了新的文献求助10
5秒前
蔡蔡发布了新的文献求助10
5秒前
SZY完成签到 ,获得积分10
6秒前
着急的冬瓜完成签到 ,获得积分10
6秒前
BingoTang完成签到,获得积分10
6秒前
花开花落发布了新的文献求助30
7秒前
7秒前
7秒前
sily完成签到,获得积分10
7秒前
lgying完成签到,获得积分10
8秒前
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
Conference Record, IAS Annual Meeting 1977 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3539974
求助须知:如何正确求助?哪些是违规求助? 3117517
关于积分的说明 9331271
捐赠科研通 2815252
什么是DOI,文献DOI怎么找? 1547491
邀请新用户注册赠送积分活动 720990
科研通“疑难数据库(出版商)”最低求助积分说明 712395