Inspection of wind turbine blades using image deblurring and deep learning segmentation

去模糊 计算机科学 运动模糊 人工智能 计算机视觉 分割 深度学习 涡轮机 图像分割 图像处理 图像复原 图像(数学) 工程类 航空航天工程
作者
Jiale Lu,Qingbin Gao,Kai Zhou
标识
DOI:10.1117/12.3009721
摘要

Remote and complex work sites of wind turbines limit the accessibility of the condition assessment. Wind turbine blades are subject to sustained wind load and harsh natural environmental conditions, which are vulnerable to various faults. Robotic-enabled sensing technology appears to be a promising solution for an efficient wind turbine blade inspection. Together with the recent advances in image processing and deep learning segmentation, automated inspection of wind turbine blades becomes possible. Nevertheless, it remains a challenging task to quantify the damage accurately due to the complex condition of images concerning motion blurs. To address this issue, an integrated framework, i.e., the combination of a Deblur Generative Adversarial Network v2 (DeblurGAN-v2) and You Only Look Once v8 (YOLO-v8) was proposed in this study. Specifically, the mapping between the motion-blurred images and those in high quality was adopted from the open-access pretrained DeblurGAN-v2, based on which the deblurring performance for wind turbine images with various motion blur scales was discussed concerning the image quality. Subsequently, the transfer learning method was implemented to fine-tune YOLO-v8. The well-trained YOLO v8 was then utilized for target defect segmentation on the deblurred images. Finally, various metrics were calculated to evaluate the segmentation accuracy and efficiency. Results prove a good generalization of DeblurGAN-v2 on wind turbine images and clearly illustrate the enhanced performance of the proposed methodology especially when the motion blur scale is within 35. The integrated framework could serve as a reference for dealing with other fuzzy image-related issues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苹果颖完成签到,获得积分10
1秒前
丘比特应助张艾宇采纳,获得10
1秒前
友友友友丶完成签到,获得积分20
1秒前
1秒前
无花果应助小鹿斑比采纳,获得10
2秒前
2秒前
sun发布了新的文献求助10
2秒前
2秒前
2秒前
聪明酒窝发布了新的文献求助10
2秒前
星辰大海应助科研小菜喵采纳,获得10
3秒前
米十二完成签到,获得积分10
3秒前
4秒前
静雯完成签到,获得积分10
4秒前
linkman发布了新的文献求助10
4秒前
4秒前
包听枫完成签到,获得积分10
5秒前
jx完成签到,获得积分10
6秒前
6秒前
6秒前
米十二发布了新的文献求助10
7秒前
7秒前
8秒前
Master-wang完成签到,获得积分10
8秒前
dandany发布了新的文献求助20
8秒前
8秒前
8秒前
8秒前
8秒前
哇哦哦完成签到,获得积分20
9秒前
rioo发布了新的文献求助10
9秒前
花花发布了新的文献求助30
9秒前
10秒前
小刘完成签到,获得积分10
12秒前
聪明酒窝完成签到,获得积分10
12秒前
13秒前
13秒前
韦觅松完成签到,获得积分10
13秒前
唠叨的小丸子完成签到,获得积分10
13秒前
自信鑫鹏完成签到,获得积分10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953878
求助须知:如何正确求助?哪些是违规求助? 3499920
关于积分的说明 11097238
捐赠科研通 3230331
什么是DOI,文献DOI怎么找? 1785920
邀请新用户注册赠送积分活动 869697
科研通“疑难数据库(出版商)”最低求助积分说明 801572