已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Inspection of wind turbine blades using image deblurring and deep learning segmentation

去模糊 计算机科学 运动模糊 人工智能 计算机视觉 分割 深度学习 涡轮机 图像分割 图像处理 图像复原 图像(数学) 工程类 航空航天工程
作者
Jiale Lu,Qingbin Gao,Kai Zhou
标识
DOI:10.1117/12.3009721
摘要

Remote and complex work sites of wind turbines limit the accessibility of the condition assessment. Wind turbine blades are subject to sustained wind load and harsh natural environmental conditions, which are vulnerable to various faults. Robotic-enabled sensing technology appears to be a promising solution for an efficient wind turbine blade inspection. Together with the recent advances in image processing and deep learning segmentation, automated inspection of wind turbine blades becomes possible. Nevertheless, it remains a challenging task to quantify the damage accurately due to the complex condition of images concerning motion blurs. To address this issue, an integrated framework, i.e., the combination of a Deblur Generative Adversarial Network v2 (DeblurGAN-v2) and You Only Look Once v8 (YOLO-v8) was proposed in this study. Specifically, the mapping between the motion-blurred images and those in high quality was adopted from the open-access pretrained DeblurGAN-v2, based on which the deblurring performance for wind turbine images with various motion blur scales was discussed concerning the image quality. Subsequently, the transfer learning method was implemented to fine-tune YOLO-v8. The well-trained YOLO v8 was then utilized for target defect segmentation on the deblurred images. Finally, various metrics were calculated to evaluate the segmentation accuracy and efficiency. Results prove a good generalization of DeblurGAN-v2 on wind turbine images and clearly illustrate the enhanced performance of the proposed methodology especially when the motion blur scale is within 35. The integrated framework could serve as a reference for dealing with other fuzzy image-related issues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善良的嫣完成签到 ,获得积分10
1秒前
3秒前
DSUNNY完成签到 ,获得积分10
5秒前
7秒前
小耗子发布了新的文献求助10
7秒前
11秒前
盐焗小崔发布了新的文献求助10
12秒前
小芭乐完成签到 ,获得积分10
15秒前
xueshu666发布了新的文献求助10
16秒前
17秒前
19秒前
玩命的糖豆完成签到 ,获得积分10
20秒前
发条小样完成签到,获得积分10
21秒前
小马甲应助孤独百合采纳,获得10
21秒前
23秒前
冬柳发布了新的文献求助10
24秒前
yang完成签到,获得积分10
25秒前
26秒前
迅速的岩完成签到,获得积分10
35秒前
39秒前
Ava应助xueshu666采纳,获得10
39秒前
40秒前
万能图书馆应助迅速的岩采纳,获得10
42秒前
浅浅完成签到,获得积分10
43秒前
酷波er应助小耗子采纳,获得10
43秒前
qhf完成签到 ,获得积分10
45秒前
高高亦竹发布了新的文献求助30
45秒前
奋进的熊完成签到,获得积分10
45秒前
小鸟芋圆露露完成签到 ,获得积分10
48秒前
49秒前
49秒前
51秒前
51秒前
春风发布了新的文献求助10
52秒前
YJL完成签到 ,获得积分10
53秒前
高高亦竹完成签到,获得积分10
54秒前
莽兽鳞上最黑的皮完成签到,获得积分10
55秒前
deswin发布了新的文献求助10
56秒前
星辰大海应助坏坏的快乐采纳,获得10
57秒前
迅速的岩发布了新的文献求助10
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463082
求助须知:如何正确求助?哪些是违规求助? 4567845
关于积分的说明 14311869
捐赠科研通 4493691
什么是DOI,文献DOI怎么找? 2461823
邀请新用户注册赠送积分活动 1450866
关于科研通互助平台的介绍 1426021