生物
工作流程
计算生物学
聚类分析
模式
透视图(图形)
数据科学
数据集成
钥匙(锁)
计算机科学
数据挖掘
机器学习
人工智能
数据库
生态学
社会学
社会科学
作者
Mohammad Lotfollahi,Yuhan Hao,Fabian J. Theis,Rahul Satija
出处
期刊:Cell
[Elsevier]
日期:2024-05-01
卷期号:187 (10): 2343-2358
被引量:11
标识
DOI:10.1016/j.cell.2024.03.009
摘要
As the number of single-cell datasets continues to grow rapidly, workflows that map new data to well-curated reference atlases offer enormous promise for the biological community. In this perspective, we discuss key computational challenges and opportunities for single-cell reference-mapping algorithms. We discuss how mapping algorithms will enable the integration of diverse datasets across disease states, molecular modalities, genetic perturbations, and diverse species and will eventually replace manual and laborious unsupervised clustering pipelines.
科研通智能强力驱动
Strongly Powered by AbleSci AI