超短脉冲
阳极
材料科学
离子
对偶(语法数字)
碳纤维
休克(循环)
纳米技术
化学物理
化学工程
化学
物理化学
有机化学
电极
物理
复合数
光学
医学
艺术
激光器
文学类
内科学
复合材料
工程类
作者
Pengfei Huang,Zekun Li,Li Chen,Yuan Li,Zhedong Liu,Jingchao Zhang,Jiawei Luo,Wenjun Zhang,Wei‐Di Liu,Xinxi Zhang,Rongtao Zhu,Yanan Chen
出处
期刊:ACS Nano
[American Chemical Society]
日期:2024-07-02
标识
DOI:10.1021/acsnano.4c02300
摘要
Graphite exhibits crystal anisotropy, which impedes the mass transfer of ion intercalation and extraction processes in Li-ion batteries. Herein, a dual-shock chemical strategy has been developed to synthesize the carbon anode. This approach comprised two key phases: (1) a thermal shock utilizing ultrahigh temperature (3228 K) can thermodynamically facilitate graphitization; (2) a mechanical shock (21.64 MPa) disrupting the π-π interactions in the aromatic chains of carbon can result in hybrid-structured carbon composed of crystalline and amorphous carbon. The optimized carbon (DSC-200-0.3) demonstrates a capacity of 208.61 mAh/g at a 10C rate, with a significant enhancement comparing with 15 mAh/g of the original graphite. Impressively, it maintains 81.06% capacity even after 3000 charge-discharge cycles. Dynamic process analysis reveals that this superior rate performance is attributed to a larger interlayer spacing facilitating ion transport comparing with the original graphite, disordered amorphous carbon for additional lithium storage sites, and crystallized carbon for enhanced charge transfer. The dual-shock chemical approach offers a cost-effective and efficient method to rapidly produce hybrid-structured carbon anodes, enabling 10C fast charging capabilities in lithium-ion batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI