The electronic structures and thermal properties of hexagonal XO ([Formula: see text], Mg and Sr) nanosheets are studied within the density functional theory. The thermal properties are computed using the specified structural parameters of the electronic properties. Thermal properties including entropy, enthalpy, free energy and heat capacity for XO nanosheets are reported. It is found that BeO is an insulator, whereas MgO and SrO are semiconductors based on the energy gap value within GGA and HSE06. The electronegativity and bonding nature of XO nanosheets differ, resulting in considerable variations in thermodynamic parameters that follow a similar pattern as a function of temperature. Enthalpy and entropy increase with temperature whereas free energy falls, owing to a change in the binary oxide internal energy of the system and the electron density distribution. Thermal energy absorbed by the lattices grows with increasing temperature to the point at which all of their modes are activated and the systems start to display unharmonicity deviating from a linear dependence. Variable parameter ranges for XO nanosheets are useful in the development of thermoelectric nanodevices.