Deep Geometric Learning With Monotonicity Constraints for Alzheimer’s Disease Progression

颂歌 单调函数 人工智能 弹道 循环神经网络 计算机科学 深度学习 机器学习 人工神经网络 数学 应用数学 数学分析 天文 物理
作者
Seungwoo Jeong,Wonsik Jung,Junghyo Sohn,Heung‐Il Suk
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tnnls.2024.3394598
摘要

Alzheimer's disease (AD) is a devastating neurodegenerative condition that precedes progressive and irreversible dementia; thus, predicting its progression over time is vital for clinical diagnosis and treatment. For this, numerous studies have implemented structural magnetic resonance imaging (MRI) to model AD progression, focusing on three integral aspects: 1) temporal variability; 2) incomplete observations; and 3) temporal geometric characteristics. However, many pioneer deep learning-based approaches addressing data variability and sparsity have yet to consider inherent geometrical properties sufficiently. These properties are integral to modeling as they correlate with brain region size, thickness, volume, and shape in AD progression. The ordinary differential equation-based geometric modeling method (ODE-RGRU) has recently emerged as a promising strategy for modeling time-series data by intertwining a recurrent neural network (RNN) and an ODE in Riemannian space. Despite its achievements, ODE-RGRU encounters limitations when extrapolating positive definite symmetric matrices from incomplete samples, leading to feature reverse occurrences that are particularly problematic, especially within the clinical facet. Therefore, this study proposes a novel geometric learning approach that models longitudinal MRI biomarkers and cognitive scores by combining three modules: topological space shift, ODE-RGRU, and trajectory estimation. We have also developed a training algorithm that integrates the manifold mapping with monotonicity constraints to reflect measurement transition irreversibility. We verify our proposed method's efficacy by predicting clinical labels and cognitive scores over time in regular and irregular settings. Furthermore, we thoroughly analyze our proposed framework through an ablation study.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiiixixiixi发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
3秒前
Cyber_relic发布了新的文献求助10
3秒前
3秒前
3秒前
cym发布了新的文献求助10
3秒前
3秒前
TheDay发布了新的文献求助10
4秒前
zzy0604完成签到,获得积分20
4秒前
Leonard完成签到,获得积分10
4秒前
Paris完成签到 ,获得积分10
4秒前
xiekunwhy完成签到,获得积分10
4秒前
惜梦睡风发布了新的文献求助10
5秒前
雪白冷荷发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
清风完成签到,获得积分10
6秒前
Wxj246801完成签到,获得积分10
6秒前
EDJekyll完成签到,获得积分10
6秒前
6秒前
FG发布了新的文献求助10
6秒前
奇遇里完成签到 ,获得积分10
7秒前
复杂的大炮完成签到 ,获得积分10
7秒前
Mic应助怡宝的小树采纳,获得10
7秒前
认真的TOTORO完成签到,获得积分10
7秒前
vv完成签到,获得积分10
7秒前
8秒前
慧子发布了新的文献求助10
9秒前
9秒前
小布丁发布了新的文献求助10
10秒前
香蕉觅云应助mumu采纳,获得10
10秒前
10秒前
好西好发布了新的文献求助10
11秒前
可爱的函函应助shining采纳,获得10
11秒前
11秒前
调皮的白玉完成签到,获得积分20
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647315
求助须知:如何正确求助?哪些是违规求助? 4773295
关于积分的说明 15038828
捐赠科研通 4806039
什么是DOI,文献DOI怎么找? 2570062
邀请新用户注册赠送积分活动 1526968
关于科研通互助平台的介绍 1486049