Deep Geometric Learning With Monotonicity Constraints for Alzheimer’s Disease Progression

颂歌 单调函数 人工智能 弹道 循环神经网络 计算机科学 深度学习 机器学习 人工神经网络 数学 应用数学 数学分析 物理 天文
作者
Seungwoo Jeong,Wonsik Jung,Junghyo Sohn,Heung‐Il Suk
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tnnls.2024.3394598
摘要

Alzheimer's disease (AD) is a devastating neurodegenerative condition that precedes progressive and irreversible dementia; thus, predicting its progression over time is vital for clinical diagnosis and treatment. For this, numerous studies have implemented structural magnetic resonance imaging (MRI) to model AD progression, focusing on three integral aspects: 1) temporal variability; 2) incomplete observations; and 3) temporal geometric characteristics. However, many pioneer deep learning-based approaches addressing data variability and sparsity have yet to consider inherent geometrical properties sufficiently. These properties are integral to modeling as they correlate with brain region size, thickness, volume, and shape in AD progression. The ordinary differential equation-based geometric modeling method (ODE-RGRU) has recently emerged as a promising strategy for modeling time-series data by intertwining a recurrent neural network (RNN) and an ODE in Riemannian space. Despite its achievements, ODE-RGRU encounters limitations when extrapolating positive definite symmetric matrices from incomplete samples, leading to feature reverse occurrences that are particularly problematic, especially within the clinical facet. Therefore, this study proposes a novel geometric learning approach that models longitudinal MRI biomarkers and cognitive scores by combining three modules: topological space shift, ODE-RGRU, and trajectory estimation. We have also developed a training algorithm that integrates the manifold mapping with monotonicity constraints to reflect measurement transition irreversibility. We verify our proposed method's efficacy by predicting clinical labels and cognitive scores over time in regular and irregular settings. Furthermore, we thoroughly analyze our proposed framework through an ablation study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
2秒前
victorchen完成签到,获得积分10
2秒前
4秒前
不爱吃鱼的猫完成签到,获得积分10
5秒前
Lucas应助1900th采纳,获得10
6秒前
6秒前
7秒前
7秒前
于水清发布了新的文献求助20
8秒前
Wl0115发布了新的文献求助10
8秒前
木日发布了新的文献求助10
8秒前
甜甜完成签到 ,获得积分20
9秒前
cjs发布了新的文献求助10
9秒前
10秒前
10秒前
飘逸的苡发布了新的文献求助10
10秒前
22222发布了新的文献求助10
11秒前
Orijump发布了新的文献求助10
12秒前
Owen应助SMLW采纳,获得10
12秒前
木槿完成签到,获得积分10
13秒前
14秒前
嘎嘎发布了新的文献求助10
14秒前
RJ完成签到,获得积分10
14秒前
15秒前
15秒前
火火吴发布了新的文献求助10
16秒前
jenningseastera应助研友_VZG64n采纳,获得10
17秒前
熊熊发布了新的文献求助10
19秒前
旺仔先生完成签到,获得积分0
19秒前
yangzai发布了新的文献求助10
20秒前
FashionBoy应助不想太多采纳,获得10
21秒前
zx发布了新的文献求助10
21秒前
21秒前
25秒前
于水清完成签到,获得积分10
26秒前
听说你还在搞什么原创完成签到,获得积分10
27秒前
量子星尘发布了新的文献求助10
27秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961083
求助须知:如何正确求助?哪些是违规求助? 3507362
关于积分的说明 11135734
捐赠科研通 3239863
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872400
科研通“疑难数据库(出版商)”最低求助积分说明 803150