Deep Geometric Learning With Monotonicity Constraints for Alzheimer’s Disease Progression

颂歌 单调函数 人工智能 弹道 循环神经网络 计算机科学 深度学习 机器学习 人工神经网络 数学 应用数学 数学分析 天文 物理
作者
Seungwoo Jeong,Wonsik Jung,Junghyo Sohn,Heung‐Il Suk
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tnnls.2024.3394598
摘要

Alzheimer's disease (AD) is a devastating neurodegenerative condition that precedes progressive and irreversible dementia; thus, predicting its progression over time is vital for clinical diagnosis and treatment. For this, numerous studies have implemented structural magnetic resonance imaging (MRI) to model AD progression, focusing on three integral aspects: 1) temporal variability; 2) incomplete observations; and 3) temporal geometric characteristics. However, many pioneer deep learning-based approaches addressing data variability and sparsity have yet to consider inherent geometrical properties sufficiently. These properties are integral to modeling as they correlate with brain region size, thickness, volume, and shape in AD progression. The ordinary differential equation-based geometric modeling method (ODE-RGRU) has recently emerged as a promising strategy for modeling time-series data by intertwining a recurrent neural network (RNN) and an ODE in Riemannian space. Despite its achievements, ODE-RGRU encounters limitations when extrapolating positive definite symmetric matrices from incomplete samples, leading to feature reverse occurrences that are particularly problematic, especially within the clinical facet. Therefore, this study proposes a novel geometric learning approach that models longitudinal MRI biomarkers and cognitive scores by combining three modules: topological space shift, ODE-RGRU, and trajectory estimation. We have also developed a training algorithm that integrates the manifold mapping with monotonicity constraints to reflect measurement transition irreversibility. We verify our proposed method's efficacy by predicting clinical labels and cognitive scores over time in regular and irregular settings. Furthermore, we thoroughly analyze our proposed framework through an ablation study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小乔发布了新的文献求助10
刚刚
1秒前
施宇宙发布了新的文献求助10
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
3秒前
nn完成签到,获得积分10
3秒前
Orange应助lynn采纳,获得30
4秒前
小蘑菇应助迷路的初柔采纳,获得10
4秒前
LAN发布了新的文献求助10
5秒前
鑫渊完成签到,获得积分10
5秒前
6秒前
lycoris发布了新的文献求助10
7秒前
7秒前
牧野七完成签到,获得积分10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
7秒前
打打应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
无花果应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
风中冰香应助科研通管家采纳,获得10
8秒前
Hilda007应助科研通管家采纳,获得10
8秒前
风中冰香应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
8秒前
马启荣完成签到,获得积分20
9秒前
Criminology34应助LEI采纳,获得10
9秒前
Mic应助科研通管家采纳,获得10
9秒前
Hilda007应助科研通管家采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
9秒前
hejingyan应助科研通管家采纳,获得10
9秒前
彭于晏应助科研通管家采纳,获得10
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424903
求助须知:如何正确求助?哪些是违规求助? 4539135
关于积分的说明 14165791
捐赠科研通 4456231
什么是DOI,文献DOI怎么找? 2444084
邀请新用户注册赠送积分活动 1435140
关于科研通互助平台的介绍 1412492