Deep Geometric Learning With Monotonicity Constraints for Alzheimer’s Disease Progression

颂歌 单调函数 人工智能 弹道 循环神经网络 计算机科学 深度学习 机器学习 人工神经网络 数学 应用数学 数学分析 物理 天文
作者
Seungwoo Jeong,Wonsik Jung,Junghyo Sohn,Heung‐Il Suk
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tnnls.2024.3394598
摘要

Alzheimer's disease (AD) is a devastating neurodegenerative condition that precedes progressive and irreversible dementia; thus, predicting its progression over time is vital for clinical diagnosis and treatment. For this, numerous studies have implemented structural magnetic resonance imaging (MRI) to model AD progression, focusing on three integral aspects: 1) temporal variability; 2) incomplete observations; and 3) temporal geometric characteristics. However, many pioneer deep learning-based approaches addressing data variability and sparsity have yet to consider inherent geometrical properties sufficiently. These properties are integral to modeling as they correlate with brain region size, thickness, volume, and shape in AD progression. The ordinary differential equation-based geometric modeling method (ODE-RGRU) has recently emerged as a promising strategy for modeling time-series data by intertwining a recurrent neural network (RNN) and an ODE in Riemannian space. Despite its achievements, ODE-RGRU encounters limitations when extrapolating positive definite symmetric matrices from incomplete samples, leading to feature reverse occurrences that are particularly problematic, especially within the clinical facet. Therefore, this study proposes a novel geometric learning approach that models longitudinal MRI biomarkers and cognitive scores by combining three modules: topological space shift, ODE-RGRU, and trajectory estimation. We have also developed a training algorithm that integrates the manifold mapping with monotonicity constraints to reflect measurement transition irreversibility. We verify our proposed method's efficacy by predicting clinical labels and cognitive scores over time in regular and irregular settings. Furthermore, we thoroughly analyze our proposed framework through an ablation study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不安饼干完成签到 ,获得积分10
刚刚
活泼的飞鸟完成签到,获得积分10
刚刚
1秒前
xuyun发布了新的文献求助10
1秒前
1秒前
zzcres完成签到,获得积分10
3秒前
eeeee完成签到 ,获得积分10
3秒前
乐观德地完成签到,获得积分10
4秒前
大个应助yf_zhu采纳,获得10
4秒前
llk发布了新的文献求助10
5秒前
一只大肥猫完成签到,获得积分10
5秒前
5秒前
7秒前
7秒前
7秒前
7秒前
科研通AI5应助GGG采纳,获得10
8秒前
8秒前
10秒前
Ann发布了新的文献求助20
10秒前
10秒前
buno应助duxinyue采纳,获得10
10秒前
xlj发布了新的文献求助10
11秒前
11秒前
可爱的函函应助zhen采纳,获得10
12秒前
研友_VZG7GZ应助dingdong采纳,获得10
13秒前
13秒前
李成恩完成签到 ,获得积分10
14秒前
心碎的黄焖鸡完成签到 ,获得积分10
14秒前
琪琪扬扬发布了新的文献求助10
15秒前
16秒前
16秒前
宗磬完成签到,获得积分10
17秒前
NexusExplorer应助搞怪不言采纳,获得10
18秒前
科研通AI5应助一天八杯水采纳,获得10
19秒前
19秒前
19秒前
20秒前
大模型应助琪琪扬扬采纳,获得10
21秒前
丘比特应助琪琪扬扬采纳,获得10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808