已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Opening the Black Box: Spatial Transcriptomics and the Relevance of Artificial Intelligence–Detected Prognostic Regions in High-Grade Serous Carcinoma

病理 浆液性癌 浆液性液体 转录组 揭穿 医学 肿瘤科 人工智能 生物 计算机科学 癌症 内科学 生物化学 基因 基因表达 卵巢癌
作者
Anna R. Laury,Shuyu Zheng,Niina Aho,Robin Fallegger,Satu Hänninen,Julio Sáez-Rodríguez,Jovan Tanevski,Omar Youssef,Jing Tang,Olli Carpén
出处
期刊:Modern Pathology [Springer Nature]
卷期号:37 (7): 100508-100508 被引量:1
标识
DOI:10.1016/j.modpat.2024.100508
摘要

Image-based deep learning models are used to extract new information from standard hematoxylin and eosin pathology slides; however, biological interpretation of the features detected by artificial intelligence (AI) remains a challenge. High-grade serous carcinoma of the ovary (HGSC) is characterized by aggressive behavior and chemotherapy resistance, but also exhibits striking variability in outcome. Our understanding of this disease is limited, partly due to considerable tumor heterogeneity. We previously trained an AI model to identify HGSC tumor regions that are highly associated with outcome status but are indistinguishable by conventional morphologic methods. Here, we applied spatially resolved transcriptomics to further profile the AI-identified tumor regions in 16 patients (8 per outcome group) and identify molecular features related to disease outcome in patients who underwent primary debulking surgery and platinum-based chemotherapy. We examined formalin-fixed paraffin-embedded tissue from (1) regions identified by the AI model as highly associated with short or extended chemotherapy response, and (2) background tumor regions (not identified by the AI model as highly associated with outcome status) from the same tumors. We show that the transcriptomic profiles of AI-identified regions are more distinct than background regions from the same tumors, are superior in predicting outcome, and differ in several pathways including those associated with chemoresistance in HGSC. Further, we find that poor outcome and good outcome regions are enriched by different tumor subpopulations, suggesting distinctive interaction patterns. In summary, our work presents proof of concept that AI-guided spatial transcriptomic analysis improves recognition of biologic features relevant to patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曹great发布了新的文献求助10
刚刚
zho发布了新的文献求助10
刚刚
在水一方应助咚咚采纳,获得10
2秒前
rubyyyy完成签到,获得积分10
4秒前
fzzzzlucy完成签到,获得积分10
6秒前
rubyyyy发布了新的文献求助10
7秒前
9秒前
10秒前
菠萝完成签到 ,获得积分10
12秒前
13秒前
15秒前
15秒前
mkb完成签到,获得积分20
16秒前
含蓄凝天发布了新的文献求助10
16秒前
17秒前
YifanWang应助朱朱采纳,获得10
19秒前
mkb发布了新的文献求助10
19秒前
22秒前
嗯哼应助55555采纳,获得50
22秒前
科研通AI2S应助superstar娜娜采纳,获得10
23秒前
23秒前
宽宽完成签到,获得积分10
23秒前
25秒前
健壮冬卉完成签到,获得积分10
27秒前
含蓄凝天完成签到,获得积分10
27秒前
啊啦啦发布了新的文献求助10
29秒前
金葡菌发布了新的文献求助10
29秒前
哈哈悦发布了新的文献求助10
30秒前
倔驴发布了新的文献求助10
31秒前
31秒前
农夫完成签到,获得积分0
32秒前
minet发布了新的文献求助20
33秒前
38秒前
czlianjoy完成签到,获得积分10
39秒前
俊俊完成签到 ,获得积分0
39秒前
lll发布了新的文献求助10
41秒前
斯文败类应助悦动采纳,获得10
41秒前
41秒前
啊啦啦完成签到,获得积分10
42秒前
43秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Product Class 33: N-Arylhydroxylamines 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3388158
求助须知:如何正确求助?哪些是违规求助? 3000635
关于积分的说明 8792479
捐赠科研通 2686677
什么是DOI,文献DOI怎么找? 1471749
科研通“疑难数据库(出版商)”最低求助积分说明 680498
邀请新用户注册赠送积分活动 673224