Rapid and nondestructive watermelon (Citrullus lanatus) seed viability detection based on visible near‐infrared hyperspectral imaging technology and machine learning algorithms

西瓜 高光谱成像 支持向量机 人工智能 计算机科学 机器学习 算法 模式识别(心理学) 数学 园艺 生物
作者
Min Xu,Adria Nirere,Keza Dominique Dusabe,Zhong Yuhao,Guverinoma Adrien
出处
期刊:Journal of Food Science [Wiley]
卷期号:89 (7): 4403-4418
标识
DOI:10.1111/1750-3841.17151
摘要

The improper storage of seeds can potentially compromise agricultural productivity, leading to reduced crop yields. Therefore, assessing seed viability before sowing is of paramount importance. Although numerous techniques exist for evaluating seed conditions, this research leveraged hyperspectral imaging (HSI) technology as an innovative, rapid, clean, and precise nondestructive testing method. The study aimed to determine the most effective classification model for watermelon seeds. Initially, purchased watermelon seeds were segregated into two groups: One underwent sterilization in a dehydrator machine at 40°C for 36 h, whereas the other batch was stored under favorable conditions. Watermelon seeds' spectral images were captured using an HSI with a charge-coupled device camera ranging from 400 to 1000 nm, and the segmented regions of all samples were measured. Preprocessing techniques and wavelength selection methods were applied to manage spectral data workload, followed by the implementation of a support vector machine (SVM) model. The initial hybrid-SVM model achieved a predictive accuracy rate of 100%, with a test set accuracy of 92.33%. Subsequently, an artificial bee colony (ABC) optimization was introduced to enhance model precision. The results indicated that, with kernel parameters (c, g) set at 13.17 and 0.01, respectively, and a runtime of 4.19328 s, the training and evaluation of the dataset achieved an accuracy rate of 100%. Hence, it was practical to utilize HSI technology combined with the PCA-ABC-SVM model to detect different watermelon seeds. As a result, these findings introduce a novel technique for accurately forecasting seed viability, intended for use in agricultural industrial multispectral imaging. PRACTICAL APPLICATION: The traditional methods for determining the condition of seeds primarily emphasize aesthetics, rely on subjective assessment, are time-consuming, and require a lot of labor. On the other hand, HSI technology as green technology was employed to alleviate the aforementioned problems. This work significantly contributes to the field of industrial multispectral imaging by enhancing the capacity to discern various types of seeds and agricultural crop products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助Yale采纳,获得10
1秒前
3秒前
浮游应助贝酷酱采纳,获得10
4秒前
tu123发布了新的文献求助10
9秒前
10秒前
傅剑寒发布了新的文献求助10
10秒前
共享精神应助执着的忆雪采纳,获得10
11秒前
爆米花应助jiayi0114采纳,获得10
11秒前
LZY完成签到,获得积分10
11秒前
zzzzzzzzzj完成签到,获得积分10
13秒前
li完成签到,获得积分10
13秒前
追风少年完成签到,获得积分10
13秒前
三水发布了新的文献求助10
14秒前
谨慎晓灵完成签到 ,获得积分20
15秒前
chen完成签到,获得积分10
15秒前
16秒前
今后应助小水滴采纳,获得10
16秒前
lian完成签到,获得积分20
16秒前
沙漠水发布了新的文献求助10
18秒前
zxy完成签到,获得积分10
21秒前
22秒前
陈进发布了新的文献求助10
23秒前
23秒前
orixero应助安详的觅风采纳,获得10
25秒前
xdc发布了新的文献求助10
27秒前
小水滴发布了新的文献求助10
29秒前
29秒前
30秒前
Xu完成签到 ,获得积分10
32秒前
32秒前
32秒前
33秒前
34秒前
34秒前
今后应助volunteer采纳,获得10
35秒前
35秒前
小水滴完成签到,获得积分20
36秒前
37秒前
37秒前
量子星尘发布了新的文献求助10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4914824
求助须知:如何正确求助?哪些是违规求助? 4189010
关于积分的说明 13009694
捐赠科研通 3957961
什么是DOI,文献DOI怎么找? 2170035
邀请新用户注册赠送积分活动 1188261
关于科研通互助平台的介绍 1095917