Rapid and nondestructive watermelon (Citrullus lanatus) seed viability detection based on visible near‐infrared hyperspectral imaging technology and machine learning algorithms

西瓜 高光谱成像 支持向量机 人工智能 计算机科学 机器学习 算法 模式识别(心理学) 数学 园艺 生物
作者
Min Xu,Adria Nirere,Keza Dominique Dusabe,Zhong Yuhao,Guverinoma Adrien
出处
期刊:Journal of Food Science [Wiley]
卷期号:89 (7): 4403-4418
标识
DOI:10.1111/1750-3841.17151
摘要

The improper storage of seeds can potentially compromise agricultural productivity, leading to reduced crop yields. Therefore, assessing seed viability before sowing is of paramount importance. Although numerous techniques exist for evaluating seed conditions, this research leveraged hyperspectral imaging (HSI) technology as an innovative, rapid, clean, and precise nondestructive testing method. The study aimed to determine the most effective classification model for watermelon seeds. Initially, purchased watermelon seeds were segregated into two groups: One underwent sterilization in a dehydrator machine at 40°C for 36 h, whereas the other batch was stored under favorable conditions. Watermelon seeds' spectral images were captured using an HSI with a charge-coupled device camera ranging from 400 to 1000 nm, and the segmented regions of all samples were measured. Preprocessing techniques and wavelength selection methods were applied to manage spectral data workload, followed by the implementation of a support vector machine (SVM) model. The initial hybrid-SVM model achieved a predictive accuracy rate of 100%, with a test set accuracy of 92.33%. Subsequently, an artificial bee colony (ABC) optimization was introduced to enhance model precision. The results indicated that, with kernel parameters (c, g) set at 13.17 and 0.01, respectively, and a runtime of 4.19328 s, the training and evaluation of the dataset achieved an accuracy rate of 100%. Hence, it was practical to utilize HSI technology combined with the PCA-ABC-SVM model to detect different watermelon seeds. As a result, these findings introduce a novel technique for accurately forecasting seed viability, intended for use in agricultural industrial multispectral imaging. PRACTICAL APPLICATION: The traditional methods for determining the condition of seeds primarily emphasize aesthetics, rely on subjective assessment, are time-consuming, and require a lot of labor. On the other hand, HSI technology as green technology was employed to alleviate the aforementioned problems. This work significantly contributes to the field of industrial multispectral imaging by enhancing the capacity to discern various types of seeds and agricultural crop products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JPH1990应助周一采纳,获得10
刚刚
zzz发布了新的文献求助10
1秒前
物择发布了新的文献求助10
1秒前
xiaoyangjuejue完成签到,获得积分10
1秒前
1秒前
我是老大应助啦啦啦采纳,获得80
1秒前
LI完成签到,获得积分10
2秒前
锦鲤完成签到 ,获得积分10
2秒前
PPP应助高贵的晓筠采纳,获得10
2秒前
fanfan发布了新的文献求助10
3秒前
15987完成签到,获得积分10
3秒前
3秒前
3秒前
11111完成签到,获得积分10
3秒前
吃不饱完成签到,获得积分10
4秒前
充电宝应助Anesthesialy采纳,获得10
4秒前
七木发布了新的文献求助10
6秒前
科研通AI2S应助无语的乌鸦采纳,获得10
6秒前
爆米花应助无语的乌鸦采纳,获得10
6秒前
6秒前
6秒前
pancake发布了新的文献求助30
6秒前
慕青应助大胆冰岚采纳,获得10
7秒前
IIIIIIIIIIIIII完成签到 ,获得积分10
7秒前
7秒前
酷波er应助杨sir采纳,获得10
7秒前
鸢也完成签到,获得积分10
8秒前
烙饼完成签到,获得积分10
8秒前
风凌发布了新的文献求助10
8秒前
Emily完成签到,获得积分10
8秒前
suiyi完成签到,获得积分10
8秒前
Eternity2025应助76542cu采纳,获得10
8秒前
tu123完成签到,获得积分10
9秒前
情怀应助buerjia采纳,获得10
9秒前
duts发布了新的文献求助20
9秒前
LONG完成签到 ,获得积分10
9秒前
小杜完成签到,获得积分10
9秒前
10秒前
脑洞疼应助川流采纳,获得10
10秒前
小华安发布了新的文献求助30
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5257965
求助须知:如何正确求助?哪些是违规求助? 4419974
关于积分的说明 13758480
捐赠科研通 4293444
什么是DOI,文献DOI怎么找? 2355931
邀请新用户注册赠送积分活动 1352389
关于科研通互助平台的介绍 1313159