Rapid and nondestructive watermelon (Citrullus lanatus) seed viability detection based on visible near‐infrared hyperspectral imaging technology and machine learning algorithms

西瓜 高光谱成像 支持向量机 人工智能 计算机科学 机器学习 算法 模式识别(心理学) 数学 园艺 生物
作者
Min Xu,Adria Nirere,Keza Dominique Dusabe,Zhong Yuhao,Guverinoma Adrien
出处
期刊:Journal of Food Science [Wiley]
卷期号:89 (7): 4403-4418
标识
DOI:10.1111/1750-3841.17151
摘要

The improper storage of seeds can potentially compromise agricultural productivity, leading to reduced crop yields. Therefore, assessing seed viability before sowing is of paramount importance. Although numerous techniques exist for evaluating seed conditions, this research leveraged hyperspectral imaging (HSI) technology as an innovative, rapid, clean, and precise nondestructive testing method. The study aimed to determine the most effective classification model for watermelon seeds. Initially, purchased watermelon seeds were segregated into two groups: One underwent sterilization in a dehydrator machine at 40°C for 36 h, whereas the other batch was stored under favorable conditions. Watermelon seeds' spectral images were captured using an HSI with a charge-coupled device camera ranging from 400 to 1000 nm, and the segmented regions of all samples were measured. Preprocessing techniques and wavelength selection methods were applied to manage spectral data workload, followed by the implementation of a support vector machine (SVM) model. The initial hybrid-SVM model achieved a predictive accuracy rate of 100%, with a test set accuracy of 92.33%. Subsequently, an artificial bee colony (ABC) optimization was introduced to enhance model precision. The results indicated that, with kernel parameters (c, g) set at 13.17 and 0.01, respectively, and a runtime of 4.19328 s, the training and evaluation of the dataset achieved an accuracy rate of 100%. Hence, it was practical to utilize HSI technology combined with the PCA-ABC-SVM model to detect different watermelon seeds. As a result, these findings introduce a novel technique for accurately forecasting seed viability, intended for use in agricultural industrial multispectral imaging. PRACTICAL APPLICATION: The traditional methods for determining the condition of seeds primarily emphasize aesthetics, rely on subjective assessment, are time-consuming, and require a lot of labor. On the other hand, HSI technology as green technology was employed to alleviate the aforementioned problems. This work significantly contributes to the field of industrial multispectral imaging by enhancing the capacity to discern various types of seeds and agricultural crop products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
锦瑟幽梦完成签到,获得积分10
2秒前
xinxin完成签到,获得积分20
2秒前
2秒前
3秒前
3秒前
缓慢醉卉发布了新的文献求助10
3秒前
3秒前
lize5493发布了新的文献求助30
4秒前
爆米花应助迷人万仇采纳,获得10
4秒前
顺心的舞蹈完成签到,获得积分10
4秒前
张亚雪发布了新的文献求助10
5秒前
5秒前
solota发布了新的文献求助10
6秒前
komorebi发布了新的文献求助10
8秒前
8秒前
xl²-B完成签到,获得积分10
8秒前
凡帝发布了新的文献求助10
8秒前
xiaotianli完成签到,获得积分10
9秒前
9秒前
小蘑菇应助缓慢醉卉采纳,获得10
10秒前
金虎完成签到,获得积分10
11秒前
11秒前
火星上的穆完成签到,获得积分10
11秒前
12秒前
迷人万仇给迷人万仇的求助进行了留言
15秒前
陈霸下。发布了新的文献求助10
16秒前
大力弼发布了新的文献求助10
17秒前
妮多完成签到,获得积分10
18秒前
思源应助Rita采纳,获得10
20秒前
陈霸下。完成签到,获得积分10
24秒前
冷傲小猫咪完成签到,获得积分20
24秒前
25秒前
共享精神应助komorebi采纳,获得10
26秒前
笨笨甜瓜完成签到,获得积分10
26秒前
Owen应助酷酷紫采纳,获得10
27秒前
闪闪妙菡完成签到,获得积分10
27秒前
妮多发布了新的文献求助10
27秒前
sungyoo完成签到,获得积分10
29秒前
上官若男应助大胆的雪糕采纳,获得10
29秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124628
求助须知:如何正确求助?哪些是违规求助? 2774905
关于积分的说明 7724757
捐赠科研通 2430459
什么是DOI,文献DOI怎么找? 1291134
科研通“疑难数据库(出版商)”最低求助积分说明 622066
版权声明 600323