Rapid and nondestructive watermelon (Citrullus lanatus) seed viability detection based on visible near‐infrared hyperspectral imaging technology and machine learning algorithms

西瓜 高光谱成像 支持向量机 人工智能 计算机科学 机器学习 算法 模式识别(心理学) 数学 园艺 生物
作者
Min Xu,Adria Nirere,Keza Dominique Dusabe,Zhong Yuhao,Guverinoma Adrien
出处
期刊:Journal of Food Science [Wiley]
卷期号:89 (7): 4403-4418
标识
DOI:10.1111/1750-3841.17151
摘要

The improper storage of seeds can potentially compromise agricultural productivity, leading to reduced crop yields. Therefore, assessing seed viability before sowing is of paramount importance. Although numerous techniques exist for evaluating seed conditions, this research leveraged hyperspectral imaging (HSI) technology as an innovative, rapid, clean, and precise nondestructive testing method. The study aimed to determine the most effective classification model for watermelon seeds. Initially, purchased watermelon seeds were segregated into two groups: One underwent sterilization in a dehydrator machine at 40°C for 36 h, whereas the other batch was stored under favorable conditions. Watermelon seeds' spectral images were captured using an HSI with a charge-coupled device camera ranging from 400 to 1000 nm, and the segmented regions of all samples were measured. Preprocessing techniques and wavelength selection methods were applied to manage spectral data workload, followed by the implementation of a support vector machine (SVM) model. The initial hybrid-SVM model achieved a predictive accuracy rate of 100%, with a test set accuracy of 92.33%. Subsequently, an artificial bee colony (ABC) optimization was introduced to enhance model precision. The results indicated that, with kernel parameters (c, g) set at 13.17 and 0.01, respectively, and a runtime of 4.19328 s, the training and evaluation of the dataset achieved an accuracy rate of 100%. Hence, it was practical to utilize HSI technology combined with the PCA-ABC-SVM model to detect different watermelon seeds. As a result, these findings introduce a novel technique for accurately forecasting seed viability, intended for use in agricultural industrial multispectral imaging. PRACTICAL APPLICATION: The traditional methods for determining the condition of seeds primarily emphasize aesthetics, rely on subjective assessment, are time-consuming, and require a lot of labor. On the other hand, HSI technology as green technology was employed to alleviate the aforementioned problems. This work significantly contributes to the field of industrial multispectral imaging by enhancing the capacity to discern various types of seeds and agricultural crop products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
小南发布了新的文献求助10
2秒前
光亮天蓉发布了新的文献求助10
6秒前
justsoso完成签到,获得积分10
6秒前
上官若男应助曾梦采纳,获得10
6秒前
wan发布了新的文献求助30
8秒前
12秒前
啦啦康发布了新的文献求助10
13秒前
zzmmlll完成签到,获得积分10
14秒前
linxiang完成签到,获得积分10
15秒前
吴祥坤发布了新的文献求助10
16秒前
九秋霜完成签到,获得积分10
16秒前
Jasper应助光亮天蓉采纳,获得30
17秒前
18秒前
20秒前
21秒前
22秒前
hdd发布了新的文献求助20
24秒前
25秒前
25秒前
小学森发布了新的文献求助10
26秒前
量子星尘发布了新的文献求助10
27秒前
吴祥坤完成签到,获得积分10
27秒前
27秒前
小汪汪发布了新的文献求助10
29秒前
曾梦发布了新的文献求助10
29秒前
31秒前
123完成签到,获得积分20
31秒前
浮华完成签到,获得积分10
32秒前
32秒前
32秒前
飞飞发布了新的文献求助10
34秒前
SciGPT应助清脆的婷冉采纳,获得10
34秒前
过时的哑铃完成签到,获得积分10
34秒前
幸福慕蕊发布了新的文献求助10
36秒前
正正完成签到,获得积分10
36秒前
深情安青应助壮观以松采纳,获得10
37秒前
徐扬发布了新的文献求助10
37秒前
今后应助jiejie采纳,获得200
38秒前
852应助lei采纳,获得10
38秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959309
求助须知:如何正确求助?哪些是违规求助? 3505589
关于积分的说明 11124738
捐赠科研通 3237345
什么是DOI,文献DOI怎么找? 1789116
邀请新用户注册赠送积分活动 871544
科研通“疑难数据库(出版商)”最低求助积分说明 802844