Rapid and nondestructive watermelon (Citrullus lanatus) seed viability detection based on visible near‐infrared hyperspectral imaging technology and machine learning algorithms

西瓜 高光谱成像 支持向量机 人工智能 计算机科学 机器学习 算法 模式识别(心理学) 数学 园艺 生物
作者
Min Xu,Adria Nirere,Keza Dominique Dusabe,Zhong Yuhao,Guverinoma Adrien
出处
期刊:Journal of Food Science [Wiley]
卷期号:89 (7): 4403-4418
标识
DOI:10.1111/1750-3841.17151
摘要

The improper storage of seeds can potentially compromise agricultural productivity, leading to reduced crop yields. Therefore, assessing seed viability before sowing is of paramount importance. Although numerous techniques exist for evaluating seed conditions, this research leveraged hyperspectral imaging (HSI) technology as an innovative, rapid, clean, and precise nondestructive testing method. The study aimed to determine the most effective classification model for watermelon seeds. Initially, purchased watermelon seeds were segregated into two groups: One underwent sterilization in a dehydrator machine at 40°C for 36 h, whereas the other batch was stored under favorable conditions. Watermelon seeds' spectral images were captured using an HSI with a charge-coupled device camera ranging from 400 to 1000 nm, and the segmented regions of all samples were measured. Preprocessing techniques and wavelength selection methods were applied to manage spectral data workload, followed by the implementation of a support vector machine (SVM) model. The initial hybrid-SVM model achieved a predictive accuracy rate of 100%, with a test set accuracy of 92.33%. Subsequently, an artificial bee colony (ABC) optimization was introduced to enhance model precision. The results indicated that, with kernel parameters (c, g) set at 13.17 and 0.01, respectively, and a runtime of 4.19328 s, the training and evaluation of the dataset achieved an accuracy rate of 100%. Hence, it was practical to utilize HSI technology combined with the PCA-ABC-SVM model to detect different watermelon seeds. As a result, these findings introduce a novel technique for accurately forecasting seed viability, intended for use in agricultural industrial multispectral imaging. PRACTICAL APPLICATION: The traditional methods for determining the condition of seeds primarily emphasize aesthetics, rely on subjective assessment, are time-consuming, and require a lot of labor. On the other hand, HSI technology as green technology was employed to alleviate the aforementioned problems. This work significantly contributes to the field of industrial multispectral imaging by enhancing the capacity to discern various types of seeds and agricultural crop products.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Azaw发布了新的文献求助10
刚刚
霸气千易发布了新的文献求助10
刚刚
刚刚
WW完成签到,获得积分10
1秒前
LYC发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
ccm应助吱吱采纳,获得10
2秒前
2秒前
LINCHEN发布了新的文献求助10
2秒前
bdJ发布了新的文献求助10
2秒前
3秒前
4秒前
冷傲新柔发布了新的文献求助10
4秒前
大熊完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
樊家圣完成签到 ,获得积分10
5秒前
5秒前
5秒前
宓沂发布了新的文献求助20
6秒前
花花花海完成签到,获得积分10
6秒前
spz150完成签到,获得积分10
6秒前
fengge完成签到,获得积分10
6秒前
蔚蓝的天空完成签到 ,获得积分10
6秒前
7秒前
7秒前
晴qq发布了新的文献求助10
7秒前
ZW完成签到,获得积分10
7秒前
科研通AI6应助666采纳,获得10
8秒前
Lllll发布了新的文献求助10
8秒前
清新的问枫完成签到,获得积分10
8秒前
9秒前
英吉利25发布了新的文献求助10
9秒前
9秒前
233火发布了新的文献求助10
9秒前
11完成签到 ,获得积分10
9秒前
麦子发布了新的文献求助30
9秒前
Quhang发布了新的文献求助10
9秒前
小鸽发布了新的文献求助30
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647375
求助须知:如何正确求助?哪些是违规求助? 4773416
关于积分的说明 15039107
捐赠科研通 4806115
什么是DOI,文献DOI怎么找? 2570108
邀请新用户注册赠送积分活动 1526968
关于科研通互助平台的介绍 1486055