Classification Of Brain Tumor Using Generative Adversarial Network With RES NET Discriminator

鉴别器 计算机科学 判别式 发电机(电路理论) 人工智能 深度学习 过程(计算) 生成对抗网络 生成语法 上下文图像分类 残差神经网络 机器学习 模式识别(心理学) 图像(数学) 电信 探测器 功率(物理) 物理 量子力学 操作系统
作者
M. Umamaheswari,J. Sivadasan,Rajat Kumar Dwibedi,B. Senthilkumar,L. Pattathu Rani,S. Oviya
标识
DOI:10.1109/adics58448.2024.10533523
摘要

The classification of brain tumors using deep learning techniques has emerged as a pivotal area of medical research and diagnostics. In this study, we present an innovative approach to brain tumor classification through the application of Generative Adversarial Networks (GAN). Specifically, we have devised a GAN model with a modified ResNet architecture in the generator and a DenseNet architecture in the discriminator. By improving the precision and effectiveness of brain tumor classification, this innovative design offers substantial breakthroughs in the field of medical imaging by utilizing the capabilities of generative and discriminative networks. The generator, based on a modified ResNet, is designed to create realistic and high-resolution brain tumor images. It learns to generate synthetic brain scans that mimic the characteristics of actual tumor images, thus contributing to data augmentation and diversification. This augmentation process is crucial for training deep learning models effectively, especially when the availability of medical images is limited. The discriminator, on the other hand, employs a DenseNet architecture to distinguish between real brain tumor images and the synthetic ones generated by the ResNet-based generator. The DenseNet's ability to capture intricate details and features in medical images ensures thatthe discriminator can effectively discern between genuine and synthetic data, contributing to the GAN's overall learning process. Our proposed GAN model is trained on a diverse and well-curated dataset of brain tumor images, enabling it to identify and classify various tumor types and their characteristics with remarkable accuracy. The generated synthetic images aid in improving the model's ability to generalize and adapt to new, unseen data, thereby enhancing its performance in brain tumor classification tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闪闪灯泡完成签到 ,获得积分10
4秒前
叮叮当当完成签到,获得积分10
8秒前
张航完成签到,获得积分10
10秒前
14秒前
淀粉肠完成签到 ,获得积分10
15秒前
15秒前
16秒前
七七完成签到,获得积分10
17秒前
乾坤完成签到,获得积分10
18秒前
19秒前
英姑应助简单的卿采纳,获得10
20秒前
20秒前
keeper王完成签到,获得积分10
24秒前
shawfang完成签到,获得积分10
24秒前
liyiren完成签到,获得积分10
25秒前
lokiuiw发布了新的文献求助10
27秒前
务实的绝悟完成签到,获得积分10
28秒前
严念桃完成签到,获得积分10
28秒前
孙淳完成签到,获得积分10
28秒前
VDC应助鲤鱼幼翠采纳,获得30
29秒前
qq1083716237应助joey2024采纳,获得50
30秒前
淡然平灵应助斯文的傲珊采纳,获得10
31秒前
yirenli完成签到,获得积分10
34秒前
yongzaizhuigan完成签到,获得积分10
35秒前
疯狂的迪子完成签到 ,获得积分10
36秒前
lokiuiw完成签到,获得积分10
37秒前
吐泡泡的奇异果完成签到,获得积分10
37秒前
37秒前
Juan完成签到,获得积分10
38秒前
39秒前
学术咸鱼依白完成签到 ,获得积分10
40秒前
乐乐应助春分夏至采纳,获得10
40秒前
thangxtz完成签到,获得积分10
41秒前
我是老大应助ju龙哥采纳,获得10
42秒前
俞安珊完成签到,获得积分10
44秒前
狗狗应助现代的烤鸡采纳,获得10
46秒前
lindan完成签到 ,获得积分10
49秒前
现代的烤鸡完成签到,获得积分10
50秒前
50秒前
Feng5945完成签到 ,获得积分10
50秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Sociocultural theory and the teaching of second languages 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3339197
求助须知:如何正确求助?哪些是违规求助? 2967064
关于积分的说明 8628183
捐赠科研通 2646548
什么是DOI,文献DOI怎么找? 1449297
科研通“疑难数据库(出版商)”最低求助积分说明 671343
邀请新用户注册赠送积分活动 660180