已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Classification Of Brain Tumor Using Generative Adversarial Network With RES NET Discriminator

鉴别器 计算机科学 判别式 发电机(电路理论) 人工智能 深度学习 过程(计算) 生成对抗网络 生成语法 上下文图像分类 残差神经网络 机器学习 模式识别(心理学) 图像(数学) 电信 探测器 功率(物理) 物理 量子力学 操作系统
作者
M. Umamaheswari,J. Sivadasan,Rajat Kumar Dwibedi,B. Senthilkumar,L. Pattathu Rani,S. Oviya
标识
DOI:10.1109/adics58448.2024.10533523
摘要

The classification of brain tumors using deep learning techniques has emerged as a pivotal area of medical research and diagnostics. In this study, we present an innovative approach to brain tumor classification through the application of Generative Adversarial Networks (GAN). Specifically, we have devised a GAN model with a modified ResNet architecture in the generator and a DenseNet architecture in the discriminator. By improving the precision and effectiveness of brain tumor classification, this innovative design offers substantial breakthroughs in the field of medical imaging by utilizing the capabilities of generative and discriminative networks. The generator, based on a modified ResNet, is designed to create realistic and high-resolution brain tumor images. It learns to generate synthetic brain scans that mimic the characteristics of actual tumor images, thus contributing to data augmentation and diversification. This augmentation process is crucial for training deep learning models effectively, especially when the availability of medical images is limited. The discriminator, on the other hand, employs a DenseNet architecture to distinguish between real brain tumor images and the synthetic ones generated by the ResNet-based generator. The DenseNet's ability to capture intricate details and features in medical images ensures thatthe discriminator can effectively discern between genuine and synthetic data, contributing to the GAN's overall learning process. Our proposed GAN model is trained on a diverse and well-curated dataset of brain tumor images, enabling it to identify and classify various tumor types and their characteristics with remarkable accuracy. The generated synthetic images aid in improving the model's ability to generalize and adapt to new, unseen data, thereby enhancing its performance in brain tumor classification tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
和谐蛋蛋发布了新的文献求助10
2秒前
刘小文完成签到 ,获得积分10
3秒前
tcc完成签到 ,获得积分10
3秒前
研友_VZG7GZ应助跳跃凝阳采纳,获得10
4秒前
LZY发布了新的文献求助10
6秒前
xiaobai发布了新的文献求助10
7秒前
sy完成签到 ,获得积分10
7秒前
科研通AI6应助晏晏采纳,获得10
9秒前
10秒前
lx840518完成签到 ,获得积分10
11秒前
11秒前
Jyy77完成签到 ,获得积分10
11秒前
852应助憨憨采纳,获得10
12秒前
LZY完成签到,获得积分10
12秒前
小马甲应助阳光男孩采纳,获得10
12秒前
故事的小黄花完成签到,获得积分10
14秒前
今后应助大脸猫采纳,获得30
18秒前
19秒前
19秒前
任性冰枫完成签到,获得积分20
20秒前
小二郎应助呱呱采纳,获得10
20秒前
星辰大海应助陆人甲采纳,获得10
21秒前
在水一方应助20190129采纳,获得30
21秒前
深情安青应助热情河马采纳,获得10
21秒前
22秒前
大个应助pp采纳,获得10
23秒前
无辜凡发布了新的文献求助10
25秒前
浮游应助Arjun采纳,获得10
25秒前
xys发布了新的文献求助10
26秒前
Kevin完成签到,获得积分10
28秒前
31秒前
32秒前
32秒前
CipherSage应助小杨要读博采纳,获得10
33秒前
蛋妮完成签到 ,获得积分10
33秒前
33秒前
自由丹雪发布了新的文献求助10
35秒前
思源应助善良的冷梅采纳,获得10
35秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4899449
求助须知:如何正确求助?哪些是违规求助? 4179793
关于积分的说明 12975600
捐赠科研通 3943862
什么是DOI,文献DOI怎么找? 2163567
邀请新用户注册赠送积分活动 1181818
关于科研通互助平台的介绍 1087516