An Unsupervised Long- and Short-term Sparse Graph Neural Network for Multi-sensor Anomaly Detection

异常检测 计算机科学 期限(时间) 人工智能 模式识别(心理学) 人工神经网络 无线传感器网络 图形 数据挖掘 理论计算机科学 计算机网络 物理 量子力学
作者
Qiucheng Miao,Dandan Wang,Chuanfu Xu,Jun Zhan,Chengkun Wu
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (14): 23088-23097
标识
DOI:10.1109/jsen.2024.3383665
摘要

Anomaly detection of multivariate time series is critical in many applications. However, traditional statistical and machine learning models have limitations in modeling complex temporal dependencies and inter-sensor correlations. To address these limitations, graph neural networks (GNNs) have emerged as a powerful paradigm and shown promising progress in anomaly detection. However, most existing GNN-based methods simplify sensor associations as fully-connected graphs, contradicting real-world sparse connectivity. Moreover, while capturing inter-sensor dependencies, GNNs often overlook critical temporal dependencies in time series. To address these challenges, we propose an unsupervised Long- and Short-term Sparse Graph Attention neural network (LSGA). Specifically, we first use convolutional neural networks and Skip-Gate Recurrent Units (Skip-GRU) to extract local dependencies and long-term trends. Skip-GRU with time-skip connections effectively extends the span of information flow compared to traditional GRU. Due to the unknown graph structure between different sensors, we utilize node embedding to calculate the similarity between sensors and subsequently generate a dense similarity matrix. Then, we use the Gumbel-softmax sampling method to transform the similarity matrix into a sparse graph structure. To effectively fuse information from different sensors, we introduce a graph attention network, which can learn the relationships between sensors and dynamically fuse information based on the similarity of node embedding vectors. By means of sparse representation, we selectively focus on the information fusion of the sensors that have the greatest impact on themselves, thereby filtering out connections with low similarity between nodes and effectively removing redundant association information. Finally, we demonstrate with extensive experiments that our proposed method outperforms several state-of-the-art baseline methods in achieving better results on all four real datasets, improving average F1 by 0.97%, 7.7%, 1.92%, and 1.8%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
奋斗豆皮完成签到 ,获得积分10
1秒前
等乙天发布了新的文献求助10
2秒前
3秒前
3秒前
QLLW应助爱沉淀的太阳花采纳,获得10
3秒前
现代小丸子完成签到 ,获得积分10
4秒前
英姑应助何丽采纳,获得10
5秒前
林林总总完成签到,获得积分10
6秒前
QVQ发布了新的文献求助10
6秒前
限时达发布了新的文献求助10
6秒前
NexusExplorer应助矮小的柠檬采纳,获得10
10秒前
10秒前
快乐听南发布了新的文献求助10
11秒前
11秒前
huanir99发布了新的文献求助10
13秒前
限时达完成签到,获得积分20
13秒前
14秒前
852应助chai采纳,获得10
14秒前
生动的子轩完成签到,获得积分10
15秒前
辣目童子完成签到 ,获得积分10
15秒前
CipherSage应助mouxq采纳,获得10
15秒前
16秒前
16秒前
昏睡的铭完成签到,获得积分10
16秒前
Meteor发布了新的文献求助10
17秒前
坚定的苑睐完成签到 ,获得积分10
17秒前
顾矜应助zzznznnn采纳,获得10
17秒前
18秒前
希望天下0贩的0应助YJ采纳,获得10
18秒前
GGbond完成签到 ,获得积分10
19秒前
动听的觅波完成签到,获得积分10
20秒前
20秒前
ashley发布了新的文献求助10
20秒前
萧一发布了新的文献求助10
22秒前
23秒前
24秒前
大个应助elliotzzz采纳,获得10
24秒前
JamesPei应助爱笑以松采纳,获得10
25秒前
隐形元绿完成签到 ,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563093
求助须知:如何正确求助?哪些是违规求助? 4647860
关于积分的说明 14683144
捐赠科研通 4590036
什么是DOI,文献DOI怎么找? 2518252
邀请新用户注册赠送积分活动 1491004
关于科研通互助平台的介绍 1462318