An Unsupervised Long- and Short-term Sparse Graph Neural Network for Multi-sensor Anomaly Detection

异常检测 计算机科学 期限(时间) 人工智能 模式识别(心理学) 人工神经网络 无线传感器网络 图形 数据挖掘 理论计算机科学 计算机网络 物理 量子力学
作者
Qiucheng Miao,Dandan Wang,Chuanfu Xu,Jun Zhan,Chengkun Wu
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (14): 23088-23097
标识
DOI:10.1109/jsen.2024.3383665
摘要

Anomaly detection of multivariate time series is critical in many applications. However, traditional statistical and machine learning models have limitations in modeling complex temporal dependencies and inter-sensor correlations. To address these limitations, graph neural networks (GNNs) have emerged as a powerful paradigm and shown promising progress in anomaly detection. However, most existing GNN-based methods simplify sensor associations as fully-connected graphs, contradicting real-world sparse connectivity. Moreover, while capturing inter-sensor dependencies, GNNs often overlook critical temporal dependencies in time series. To address these challenges, we propose an unsupervised Long- and Short-term Sparse Graph Attention neural network (LSGA). Specifically, we first use convolutional neural networks and Skip-Gate Recurrent Units (Skip-GRU) to extract local dependencies and long-term trends. Skip-GRU with time-skip connections effectively extends the span of information flow compared to traditional GRU. Due to the unknown graph structure between different sensors, we utilize node embedding to calculate the similarity between sensors and subsequently generate a dense similarity matrix. Then, we use the Gumbel-softmax sampling method to transform the similarity matrix into a sparse graph structure. To effectively fuse information from different sensors, we introduce a graph attention network, which can learn the relationships between sensors and dynamically fuse information based on the similarity of node embedding vectors. By means of sparse representation, we selectively focus on the information fusion of the sensors that have the greatest impact on themselves, thereby filtering out connections with low similarity between nodes and effectively removing redundant association information. Finally, we demonstrate with extensive experiments that our proposed method outperforms several state-of-the-art baseline methods in achieving better results on all four real datasets, improving average F1 by 0.97%, 7.7%, 1.92%, and 1.8%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助小池同学采纳,获得10
1秒前
铲铲大王完成签到 ,获得积分10
1秒前
1秒前
十二平均律完成签到,获得积分10
1秒前
可爱的函函应助瞿霞采纳,获得10
2秒前
学呀完成签到,获得积分10
2秒前
2秒前
yuyuyu完成签到,获得积分10
2秒前
2秒前
ZOLEI完成签到,获得积分10
3秒前
3秒前
科研小白完成签到,获得积分20
3秒前
guohuameike完成签到,获得积分10
3秒前
栖遇完成签到 ,获得积分10
4秒前
Meng完成签到,获得积分10
4秒前
4秒前
jacob完成签到,获得积分10
4秒前
wanli445完成签到,获得积分10
4秒前
哈哈哈完成签到,获得积分10
4秒前
terrell完成签到,获得积分10
5秒前
Jane发布了新的文献求助10
5秒前
5秒前
黄科研完成签到,获得积分10
5秒前
雨好大完成签到 ,获得积分10
5秒前
juhcy发布了新的文献求助10
5秒前
七海老祖完成签到,获得积分10
5秒前
李健应助怕黑的擎采纳,获得10
6秒前
如梦如画完成签到,获得积分10
6秒前
淡淡的凡霜完成签到 ,获得积分10
6秒前
Corundum完成签到,获得积分20
6秒前
徐橙橙发布了新的文献求助10
7秒前
7秒前
王一正完成签到,获得积分10
8秒前
冷静的仙人掌完成签到,获得积分10
8秒前
9秒前
wrahb完成签到,获得积分10
9秒前
12day发布了新的文献求助10
9秒前
牙瓜完成签到 ,获得积分10
9秒前
Michael完成签到,获得积分10
10秒前
彭于晏应助CHEN采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5433116
求助须知:如何正确求助?哪些是违规求助? 4545620
关于积分的说明 14197160
捐赠科研通 4465227
什么是DOI,文献DOI怎么找? 2447494
邀请新用户注册赠送积分活动 1438664
关于科研通互助平台的介绍 1415645