An Unsupervised Long- and Short-term Sparse Graph Neural Network for Multi-sensor Anomaly Detection

异常检测 计算机科学 期限(时间) 人工智能 模式识别(心理学) 人工神经网络 无线传感器网络 图形 数据挖掘 理论计算机科学 计算机网络 物理 量子力学
作者
Qiucheng Miao,Dandan Wang,Chuanfu Xu,Jun Zhan,Chengkun Wu
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (14): 23088-23097
标识
DOI:10.1109/jsen.2024.3383665
摘要

Anomaly detection of multivariate time series is critical in many applications. However, traditional statistical and machine learning models have limitations in modeling complex temporal dependencies and inter-sensor correlations. To address these limitations, graph neural networks (GNNs) have emerged as a powerful paradigm and shown promising progress in anomaly detection. However, most existing GNN-based methods simplify sensor associations as fully-connected graphs, contradicting real-world sparse connectivity. Moreover, while capturing inter-sensor dependencies, GNNs often overlook critical temporal dependencies in time series. To address these challenges, we propose an unsupervised Long- and Short-term Sparse Graph Attention neural network (LSGA). Specifically, we first use convolutional neural networks and Skip-Gate Recurrent Units (Skip-GRU) to extract local dependencies and long-term trends. Skip-GRU with time-skip connections effectively extends the span of information flow compared to traditional GRU. Due to the unknown graph structure between different sensors, we utilize node embedding to calculate the similarity between sensors and subsequently generate a dense similarity matrix. Then, we use the Gumbel-softmax sampling method to transform the similarity matrix into a sparse graph structure. To effectively fuse information from different sensors, we introduce a graph attention network, which can learn the relationships between sensors and dynamically fuse information based on the similarity of node embedding vectors. By means of sparse representation, we selectively focus on the information fusion of the sensors that have the greatest impact on themselves, thereby filtering out connections with low similarity between nodes and effectively removing redundant association information. Finally, we demonstrate with extensive experiments that our proposed method outperforms several state-of-the-art baseline methods in achieving better results on all four real datasets, improving average F1 by 0.97%, 7.7%, 1.92%, and 1.8%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助科研通管家采纳,获得10
刚刚
桐桐应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
嗯哼应助科研通管家采纳,获得20
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
贤惠的紫菜关注了科研通微信公众号
1秒前
36456657应助科研通管家采纳,获得10
1秒前
Meredith应助科研通管家采纳,获得20
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
嗯哼应助科研通管家采纳,获得20
2秒前
ljlcyx发布了新的文献求助10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
加菲应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
赘婿应助dby采纳,获得10
2秒前
2秒前
2秒前
薰硝壤应助科研通管家采纳,获得10
2秒前
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
3秒前
3秒前
杭紫雪发布了新的文献求助10
3秒前
李健应助xiaoziyi666采纳,获得10
4秒前
传奇3应助杨杨采纳,获得10
4秒前
5秒前
6秒前
6秒前
8秒前
搜集达人应助冉柒采纳,获得10
8秒前
Dreamer0422发布了新的文献求助10
9秒前
高分求助中
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
Communist propaganda: a fact book, 1957-1958 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3177912
求助须知:如何正确求助?哪些是违规求助? 2828898
关于积分的说明 7968908
捐赠科研通 2490130
什么是DOI,文献DOI怎么找? 1327429
科研通“疑难数据库(出版商)”最低求助积分说明 635231
版权声明 602888