An Unsupervised Long- and Short-term Sparse Graph Neural Network for Multi-sensor Anomaly Detection

异常检测 计算机科学 期限(时间) 人工智能 模式识别(心理学) 人工神经网络 无线传感器网络 图形 数据挖掘 理论计算机科学 计算机网络 物理 量子力学
作者
Qiucheng Miao,Dandan Wang,Chuanfu Xu,Jun Zhan,Chengkun Wu
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (14): 23088-23097
标识
DOI:10.1109/jsen.2024.3383665
摘要

Anomaly detection of multivariate time series is critical in many applications. However, traditional statistical and machine learning models have limitations in modeling complex temporal dependencies and inter-sensor correlations. To address these limitations, graph neural networks (GNNs) have emerged as a powerful paradigm and shown promising progress in anomaly detection. However, most existing GNN-based methods simplify sensor associations as fully-connected graphs, contradicting real-world sparse connectivity. Moreover, while capturing inter-sensor dependencies, GNNs often overlook critical temporal dependencies in time series. To address these challenges, we propose an unsupervised Long- and Short-term Sparse Graph Attention neural network (LSGA). Specifically, we first use convolutional neural networks and Skip-Gate Recurrent Units (Skip-GRU) to extract local dependencies and long-term trends. Skip-GRU with time-skip connections effectively extends the span of information flow compared to traditional GRU. Due to the unknown graph structure between different sensors, we utilize node embedding to calculate the similarity between sensors and subsequently generate a dense similarity matrix. Then, we use the Gumbel-softmax sampling method to transform the similarity matrix into a sparse graph structure. To effectively fuse information from different sensors, we introduce a graph attention network, which can learn the relationships between sensors and dynamically fuse information based on the similarity of node embedding vectors. By means of sparse representation, we selectively focus on the information fusion of the sensors that have the greatest impact on themselves, thereby filtering out connections with low similarity between nodes and effectively removing redundant association information. Finally, we demonstrate with extensive experiments that our proposed method outperforms several state-of-the-art baseline methods in achieving better results on all four real datasets, improving average F1 by 0.97%, 7.7%, 1.92%, and 1.8%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Lament完成签到,获得积分10
刚刚
刚刚
所所应助下雨了采纳,获得10
刚刚
温水完成签到 ,获得积分10
刚刚
着急的棉花糖完成签到,获得积分20
刚刚
Syyyy完成签到,获得积分10
1秒前
蒸馏水发布了新的文献求助10
1秒前
1秒前
2秒前
李不乐完成签到,获得积分10
2秒前
kaiyuannnnnn完成签到,获得积分10
2秒前
zhou发布了新的文献求助10
2秒前
聪明海豚发布了新的文献求助10
3秒前
liwei发布了新的文献求助10
3秒前
123发布了新的文献求助10
3秒前
niko发布了新的文献求助30
3秒前
deng发布了新的文献求助30
3秒前
LIYI发布了新的文献求助10
4秒前
秦艽完成签到,获得积分10
4秒前
李ny完成签到,获得积分20
5秒前
5秒前
Lucas应助8y24dp采纳,获得10
5秒前
111发布了新的文献求助10
6秒前
yqsf789发布了新的文献求助10
6秒前
Sandra完成签到 ,获得积分10
6秒前
可爱的函函应助西蜀小吏采纳,获得10
6秒前
二战老兵完成签到,获得积分10
6秒前
lllly发布了新的文献求助10
8秒前
John不想上班完成签到 ,获得积分10
8秒前
gaohui完成签到,获得积分10
8秒前
bionova发布了新的文献求助10
9秒前
小冰糖完成签到 ,获得积分10
9秒前
9秒前
灬卍冉发布了新的文献求助10
9秒前
FXY发布了新的文献求助10
10秒前
10秒前
10秒前
111完成签到,获得积分10
11秒前
123完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512346
求助须知:如何正确求助?哪些是违规求助? 4606639
关于积分的说明 14500751
捐赠科研通 4542109
什么是DOI,文献DOI怎么找? 2488840
邀请新用户注册赠送积分活动 1470931
关于科研通互助平台的介绍 1443123