An Unsupervised Long- and Short-term Sparse Graph Neural Network for Multi-sensor Anomaly Detection

异常检测 计算机科学 期限(时间) 人工智能 模式识别(心理学) 人工神经网络 无线传感器网络 图形 数据挖掘 理论计算机科学 计算机网络 物理 量子力学
作者
Qiucheng Miao,Dandan Wang,Chuanfu Xu,Jun Zhan,Chengkun Wu
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (14): 23088-23097
标识
DOI:10.1109/jsen.2024.3383665
摘要

Anomaly detection of multivariate time series is critical in many applications. However, traditional statistical and machine learning models have limitations in modeling complex temporal dependencies and inter-sensor correlations. To address these limitations, graph neural networks (GNNs) have emerged as a powerful paradigm and shown promising progress in anomaly detection. However, most existing GNN-based methods simplify sensor associations as fully-connected graphs, contradicting real-world sparse connectivity. Moreover, while capturing inter-sensor dependencies, GNNs often overlook critical temporal dependencies in time series. To address these challenges, we propose an unsupervised Long- and Short-term Sparse Graph Attention neural network (LSGA). Specifically, we first use convolutional neural networks and Skip-Gate Recurrent Units (Skip-GRU) to extract local dependencies and long-term trends. Skip-GRU with time-skip connections effectively extends the span of information flow compared to traditional GRU. Due to the unknown graph structure between different sensors, we utilize node embedding to calculate the similarity between sensors and subsequently generate a dense similarity matrix. Then, we use the Gumbel-softmax sampling method to transform the similarity matrix into a sparse graph structure. To effectively fuse information from different sensors, we introduce a graph attention network, which can learn the relationships between sensors and dynamically fuse information based on the similarity of node embedding vectors. By means of sparse representation, we selectively focus on the information fusion of the sensors that have the greatest impact on themselves, thereby filtering out connections with low similarity between nodes and effectively removing redundant association information. Finally, we demonstrate with extensive experiments that our proposed method outperforms several state-of-the-art baseline methods in achieving better results on all four real datasets, improving average F1 by 0.97%, 7.7%, 1.92%, and 1.8%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
慕青应助科研通管家采纳,获得10
1秒前
菠萝吹雪应助科研通管家采纳,获得30
1秒前
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
1秒前
西内!卡Q因完成签到,获得积分10
2秒前
我是125应助www采纳,获得10
2秒前
小二郎应助鲜艳的棒棒糖采纳,获得10
2秒前
Zzzzzzzzzzz发布了新的文献求助10
2秒前
长情若魔发布了新的文献求助10
2秒前
酷酷酷完成签到,获得积分10
3秒前
3秒前
BaekHyun发布了新的文献求助10
4秒前
xuex1发布了新的文献求助10
4秒前
孙皓然完成签到 ,获得积分10
5秒前
7秒前
7秒前
9秒前
逐风给逐风的求助进行了留言
10秒前
科研通AI5应助灌饼采纳,获得30
10秒前
Owen应助Zzzzzzzzzzz采纳,获得10
11秒前
12秒前
13秒前
巫马秋寒应助笑点低可乐采纳,获得10
13秒前
xuex1完成签到,获得积分10
13秒前
情怀应助阳光的雁山采纳,获得10
15秒前
斯文败类应助jy采纳,获得10
15秒前
15秒前
日月轮回发布了新的文献求助10
16秒前
36456657应助木香采纳,获得10
17秒前
无花果应助ns采纳,获得30
17秒前
刘铭晨完成签到,获得积分10
17秒前
18秒前
YY发布了新的文献求助10
18秒前
Rrr发布了新的文献求助10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808