An Unsupervised Long- and Short-term Sparse Graph Neural Network for Multi-sensor Anomaly Detection

异常检测 计算机科学 期限(时间) 人工智能 模式识别(心理学) 人工神经网络 无线传感器网络 图形 数据挖掘 理论计算机科学 计算机网络 物理 量子力学
作者
Qiucheng Miao,Dandan Wang,Chuanfu Xu,Jun Zhan,Chengkun Wu
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:24 (14): 23088-23097
标识
DOI:10.1109/jsen.2024.3383665
摘要

Anomaly detection of multivariate time series is critical in many applications. However, traditional statistical and machine learning models have limitations in modeling complex temporal dependencies and inter-sensor correlations. To address these limitations, graph neural networks (GNNs) have emerged as a powerful paradigm and shown promising progress in anomaly detection. However, most existing GNN-based methods simplify sensor associations as fully-connected graphs, contradicting real-world sparse connectivity. Moreover, while capturing inter-sensor dependencies, GNNs often overlook critical temporal dependencies in time series. To address these challenges, we propose an unsupervised Long- and Short-term Sparse Graph Attention neural network (LSGA). Specifically, we first use convolutional neural networks and Skip-Gate Recurrent Units (Skip-GRU) to extract local dependencies and long-term trends. Skip-GRU with time-skip connections effectively extends the span of information flow compared to traditional GRU. Due to the unknown graph structure between different sensors, we utilize node embedding to calculate the similarity between sensors and subsequently generate a dense similarity matrix. Then, we use the Gumbel-softmax sampling method to transform the similarity matrix into a sparse graph structure. To effectively fuse information from different sensors, we introduce a graph attention network, which can learn the relationships between sensors and dynamically fuse information based on the similarity of node embedding vectors. By means of sparse representation, we selectively focus on the information fusion of the sensors that have the greatest impact on themselves, thereby filtering out connections with low similarity between nodes and effectively removing redundant association information. Finally, we demonstrate with extensive experiments that our proposed method outperforms several state-of-the-art baseline methods in achieving better results on all four real datasets, improving average F1 by 0.97%, 7.7%, 1.92%, and 1.8%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
百川完成签到 ,获得积分10
2秒前
pcy完成签到,获得积分10
2秒前
3秒前
4秒前
借我一份心动完成签到 ,获得积分10
6秒前
Z可完成签到 ,获得积分10
6秒前
两天浇一次水完成签到,获得积分10
7秒前
蜘猪侠zx发布了新的文献求助30
7秒前
4645完成签到,获得积分10
8秒前
8秒前
感动安露发布了新的文献求助10
11秒前
11秒前
zzy完成签到,获得积分10
12秒前
14秒前
香蕉觅云应助squirrelcone采纳,获得10
15秒前
15秒前
yuman发布了新的文献求助10
15秒前
汉堡包应助淡定的乐安采纳,获得10
15秒前
王梦完成签到 ,获得积分10
16秒前
guoguo发布了新的文献求助10
16秒前
lyk2815完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
CodeCraft应助清爽的蛋挞采纳,获得10
19秒前
欣喜的鹰完成签到,获得积分20
19秒前
CipherSage应助玛卡巴卡采纳,获得10
19秒前
19秒前
20秒前
小石头完成签到 ,获得积分10
20秒前
67完成签到 ,获得积分20
22秒前
研友_LmeK4L发布了新的文献求助10
22秒前
斯文败类应助陈江河采纳,获得10
23秒前
王多肉发布了新的文献求助200
24秒前
caocao发布了新的文献求助50
24秒前
sinolion发布了新的文献求助10
25秒前
kaikai完成签到,获得积分10
25秒前
汉堡包应助单身的淇采纳,获得10
26秒前
雪原小猫完成签到,获得积分10
26秒前
yeyeye完成签到,获得积分20
27秒前
汉堡包应助感动安露采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4601793
求助须知:如何正确求助?哪些是违规求助? 4011315
关于积分的说明 12418979
捐赠科研通 3691357
什么是DOI,文献DOI怎么找? 2035038
邀请新用户注册赠送积分活动 1068322
科研通“疑难数据库(出版商)”最低求助积分说明 952852