Machine-Learning-based Colorimetric Sensor on Smartphone for Salivary Uric Acid Detection

比色法 尿酸 计算机科学 化学 计算机视觉 生物化学
作者
Weiran Liu,Shixian Liu,Kexin Fan,Zijian Li,Zijun Guo,Davy Cheng,Guozhen Liu
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:: 1-1
标识
DOI:10.1109/jsen.2024.3404646
摘要

Background & aim: Point-of-care sensors with colorimetric signal readout are attractive in providing efficient detection outcomes, but normally with qualitative results. Quantitative information is vital for deriving accurate and sensitive diagnosis towards precise medicine. Herein we developed a generic methodology for quantifying optical intensity on a microfluidic paper test strip to detect salivary uric acid using a machine learning-based colorimetric sensor on a smartphone. Methods: A colorimetric sensor adaptable to the smartphone was designed to image the paper test trip of uric acid. The complete algorithm associated with the sensor consists of four modules: the region of interest detection module for locating key areas in the image, the color calibration module for excluding interference from different lights, the feature extraction module that extracts multidimensional features from the reaction area on the test strip, and the feature analysis module built with machine learning models to provide prediction base on extracted features. Results: The performance of our algorithm was evaluated for quantifying uric acid in both artificial saliva and clinically collected saliva by the machine learning-based colorimetric sensor. The best-performing machine learning model, the decision tree model achieves a mean absolute error of 4.2 ppm on artificial saliva samples. For the clinical samples, we perform correlation analysis between predicted salivary uric acid concentration and actual blood uric acid level. Our method for the detection of salivary uric acid achieves an r-score of 0.6140 and a p-value < 0.0001, comparing the commercially available test trips for detection of uric acid in finger-prick blood.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
激动的凡桃完成签到,获得积分10
刚刚
orixero应助YXChen采纳,获得10
1秒前
1秒前
1秒前
1秒前
能干的熊猫完成签到 ,获得积分20
2秒前
Ac关注了科研通微信公众号
3秒前
3秒前
jj发布了新的文献求助10
3秒前
reset完成签到,获得积分10
4秒前
lawm86发布了新的文献求助10
4秒前
4秒前
晚心发布了新的文献求助10
5秒前
jtj完成签到 ,获得积分20
5秒前
kagaminelen发布了新的文献求助10
5秒前
5秒前
11111111111发布了新的文献求助10
5秒前
6秒前
兰禅子发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
xzy998应助Hugt采纳,获得30
9秒前
FF完成签到,获得积分10
9秒前
9秒前
lll完成签到,获得积分10
10秒前
张朝程发布了新的文献求助10
10秒前
桃子e发布了新的文献求助10
10秒前
科研通AI5应助yxy采纳,获得10
12秒前
ch3oh发布了新的文献求助30
12秒前
12秒前
顾矜应助kagaminelen采纳,获得10
12秒前
kenankyle发布了新的文献求助30
13秒前
ZZDXXX发布了新的文献求助10
13秒前
回光返照发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
Owen应助日晋斗斤采纳,获得10
15秒前
爆米花应助ellie0125采纳,获得10
16秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3757090
求助须知:如何正确求助?哪些是违规求助? 3300403
关于积分的说明 10113496
捐赠科研通 3014854
什么是DOI,文献DOI怎么找? 1655754
邀请新用户注册赠送积分活动 790073
科研通“疑难数据库(出版商)”最低求助积分说明 753565