亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development of a risk prediction model for radiation dermatitis following proton radiotherapy in head and neck cancer using ensemble machine learning

医学 可解释性 机器学习 人工智能 随机森林 特征选择 集成学习 放射治疗 头颈部癌 逻辑回归 质子疗法 特征(语言学) 梯度升压 医学物理学 计算机科学 放射科 语言学 哲学
作者
Tsair-Fwu Lee,Yen-Hsien Liu,Chu-Ho Chang,Chien-Liang Chiù,Chih-Hsueh Lin,Jen-Chung Shao,Yu-Cheng Yen,Guang-Zhi Lin,Jack Yang,Chin-Dar Tseng,Fu‐Min Fang,Pei‐Ju Chao,Shen-Hao Lee
出处
期刊:Radiation Oncology [Springer Nature]
卷期号:19 (1)
标识
DOI:10.1186/s13014-024-02470-1
摘要

Abstract Purpose This study aims to develop an ensemble machine learning-based (EML-based) risk prediction model for radiation dermatitis (RD) in patients with head and neck cancer undergoing proton radiotherapy, with the goal of achieving superior predictive performance compared to traditional models. Materials and methods Data from 57 head and neck cancer patients treated with intensity-modulated proton therapy at Kaohsiung Chang Gung Memorial Hospital were analyzed. The study incorporated 11 clinical and 9 dosimetric parameters. Pearson’s correlation was used to eliminate highly correlated variables, followed by feature selection via LASSO to focus on potential RD predictors. Model training involved traditional logistic regression (LR) and advanced ensemble methods such as Random Forest and XGBoost, which were optimized through hyperparameter tuning. Results Feature selection identified six key predictors, including smoking history and specific dosimetric parameters. Ensemble machine learning models, particularly XGBoost, demonstrated superior performance, achieving the highest AUC of 0.890. Feature importance was assessed using SHAP (SHapley Additive exPlanations) values, which underscored the relevance of various clinical and dosimetric factors in predicting RD. Conclusion The study confirms that EML methods, especially XGBoost with its boosting algorithm, provide superior predictive accuracy, enhanced feature selection, and improved data handling compared to traditional LR. While LR offers greater interpretability, the precision and broader applicability of EML make it more suitable for complex medical prediction tasks, such as predicting radiation dermatitis. Given these advantages, EML is highly recommended for further research and application in clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风中的夕阳完成签到,获得积分20
9秒前
11秒前
17秒前
vsvsgo发布了新的文献求助10
17秒前
shinexxg发布了新的文献求助10
18秒前
22秒前
kdc发布了新的文献求助10
22秒前
初见完成签到,获得积分10
23秒前
我是老大应助芥蓝蓝精灵采纳,获得10
24秒前
24秒前
ehsan发布了新的文献求助10
27秒前
27秒前
bkagyin应助vsvsgo采纳,获得10
27秒前
28秒前
30秒前
可乐发布了新的文献求助10
30秒前
剑逍遥完成签到 ,获得积分10
34秒前
Ava应助被人强迫的采纳,获得10
37秒前
可爱的函函应助shinexxg采纳,获得10
37秒前
43秒前
zhiwei完成签到 ,获得积分10
46秒前
48秒前
49秒前
小迪完成签到 ,获得积分10
51秒前
Orange应助矢思然采纳,获得10
1分钟前
kyfbrahha完成签到 ,获得积分10
1分钟前
似水流年完成签到 ,获得积分10
1分钟前
NexusExplorer应助朴素妙梦采纳,获得30
1分钟前
kdc完成签到,获得积分10
1分钟前
1分钟前
领导范儿应助YC采纳,获得10
1分钟前
任元元完成签到 ,获得积分10
1分钟前
Sunian应助whqpeter采纳,获得20
1分钟前
1分钟前
1分钟前
拼搏妙竹发布了新的文献求助10
1分钟前
英俊的铭应助jimmylafs采纳,获得10
1分钟前
IM小红旗完成签到,获得积分10
1分钟前
隐形问萍发布了新的文献求助10
1分钟前
1分钟前
高分求助中
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3417533
求助须知:如何正确求助?哪些是违规求助? 3019178
关于积分的说明 8886703
捐赠科研通 2706597
什么是DOI,文献DOI怎么找? 1484400
科研通“疑难数据库(出版商)”最低求助积分说明 685980
邀请新用户注册赠送积分活动 681138