A short-term power load forecasting system based on data decomposition, deep learning and weighted linear error correction with feedback mechanism

期限(时间) 计算机科学 机制(生物学) 电力系统 分解 控制理论(社会学) 人工智能 算法 功率(物理) 控制(管理) 生态学 哲学 物理 认识论 量子力学 生物
作者
Zhaochen Dong,Zhirui Tian,Shuang Lv
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:162: 111863-111863 被引量:6
标识
DOI:10.1016/j.asoc.2024.111863
摘要

Accurate power load forecasting enables Independent System Operators (ISOs) to precisely quantify the demand patterns of users and achieve efficient management of the smart grid. However, with the increasing variety of power consumption patterns, the power load data displays increasingly irregular characteristics, which posing great challenges for accurate load forecasting. In order to solve above problem, a novel power load forecasting system is proposed based on data denoising, customized deep learning and weighted linear error correction. Specifically, we first proposed an improved optimization algorithm IGWO-JAYA which enhanced the Grey Wolf Optimizer (GWO) algorithm by using Halton low-discrepancy sequence and the mechanism of JAYA algorithm. In data denoising, the proposed optimizer was employed to optimize the Variational Mode Decomposition (VMD), enabling data-driven intelligent denoising. The customized deep learning framework contained multi-layer Convolution Neural Network (CNN), Bi-directional Long Short-Term Memory (Bi-LSTM) and Multi-Head Attention mechanism. The effective integration of these layers can significantly improve the capacity for nonlinear fitting of deep learning. In weighted linear error correction, the IGWO-JAYA algorithm was employed to determine the appropriate weight for point forecasting values and residual forecasting values. By weighting them, the forecasting precision has been further enhanced. To verify the forecasting ability of the system, we conducted experiments on power load datasets from four states in Australia and found that it has the best performance compared with all rivals. In the discussion, we demonstrated the convergence efficiency of the IGWO-JAYA algorithm by CEC test function.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
彻底完成签到,获得积分10
1秒前
woods完成签到,获得积分10
1秒前
sycamore完成签到,获得积分10
1秒前
犬狗狗完成签到 ,获得积分10
1秒前
小小超完成签到 ,获得积分10
3秒前
decademe完成签到,获得积分10
3秒前
包李完成签到,获得积分10
4秒前
眼睛大的松鼠完成签到 ,获得积分10
4秒前
儒雅龙完成签到 ,获得积分10
4秒前
王安娜完成签到 ,获得积分20
4秒前
心斋发布了新的文献求助10
4秒前
呵呵喊我完成签到,获得积分10
5秒前
5秒前
前排61完成签到 ,获得积分10
5秒前
阿枫完成签到,获得积分10
6秒前
xiaoqianqian174完成签到,获得积分10
7秒前
张张完成签到 ,获得积分10
8秒前
炜博完成签到,获得积分10
8秒前
WSGQT完成签到 ,获得积分10
9秒前
lzylzy完成签到,获得积分10
9秒前
凌霄完成签到 ,获得积分10
9秒前
呆萌笑晴完成签到,获得积分10
10秒前
轻爱完成签到,获得积分10
11秒前
简柠完成签到,获得积分10
11秒前
xin完成签到,获得积分10
13秒前
zhugao完成签到,获得积分10
13秒前
15秒前
16秒前
外向菲鹰完成签到,获得积分10
16秒前
yjj6809完成签到,获得积分10
17秒前
17秒前
小熊完成签到,获得积分10
17秒前
Jasmine Mai完成签到,获得积分10
19秒前
想毕业完成签到,获得积分10
19秒前
momomo完成签到 ,获得积分10
19秒前
龙王爱吃糖完成签到 ,获得积分10
20秒前
CBP完成签到,获得积分10
21秒前
李家新29完成签到,获得积分10
21秒前
exosome发布了新的文献求助10
22秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736836
求助须知:如何正确求助?哪些是违规求助? 3280783
关于积分的说明 10020943
捐赠科研通 2997447
什么是DOI,文献DOI怎么找? 1644596
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749689