Hyperparameter optimization: Classics, acceleration, online, multi-objective, and tools

超参数 加速度 计算机科学 人工智能 物理 经典力学
作者
Jia Mian Tan,Haoran Liao,Wei Liu,Changjun Fan,Jincai Huang,Bai Li,Junchi Yan
出处
期刊:Mathematical Biosciences and Engineering [Arizona State University]
卷期号:21 (6): 6289-6335
标识
DOI:10.3934/mbe.2024275
摘要

Hyperparameter optimization (HPO) has been well-developed and evolved into a well-established research topic over the decades. With the success and wide application of deep learning, HPO has garnered increased attention, particularly within the realm of machine learning model training and inference. The primary objective is to mitigate the challenges associated with manual hyperparameter tuning, which can be ad-hoc, reliant on human expertise, and consequently hinders reproducibility while inflating deployment costs. Recognizing the growing significance of HPO, this paper surveyed classical HPO methods, approaches for accelerating the optimization process, HPO in an online setting (dynamic algorithm configuration, DAC), and when there is more than one objective to optimize (multi-objective HPO). Acceleration strategies were categorized into multi-fidelity, bandit-based, and early stopping; DAC algorithms encompassed gradient-based, population-based, and reinforcement learning-based methods; multi-objective HPO can be approached via scalarization, metaheuristics, and model-based algorithms tailored for multi-objective situation. A tabulated overview of popular frameworks and tools for HPO was provided, catering to the interests of practitioners.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
英姑应助懂得珍惜采纳,获得10
1秒前
Merlin应助李锐采纳,获得30
2秒前
Merlin应助李锐采纳,获得30
2秒前
志轩应助李锐采纳,获得10
2秒前
3秒前
3秒前
无心的秋珊完成签到 ,获得积分10
4秒前
niumi190完成签到,获得积分10
4秒前
5秒前
许许完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
缓慢安柏发布了新的文献求助10
7秒前
gdh发布了新的文献求助10
7秒前
7秒前
会撒娇的如天完成签到 ,获得积分10
7秒前
大个应助爱听歌初曼采纳,获得10
8秒前
Owen应助ww采纳,获得10
9秒前
9秒前
hhhyyy发布了新的文献求助10
9秒前
白派派主发布了新的文献求助10
9秒前
王嘉怡发布了新的文献求助10
9秒前
9秒前
追忆发布了新的文献求助10
10秒前
MYGO发布了新的文献求助10
10秒前
爱笑向彤发布了新的文献求助20
11秒前
woshibyu完成签到 ,获得积分20
11秒前
11秒前
烟花应助退之采纳,获得10
11秒前
11秒前
12秒前
12秒前
呼延水云发布了新的文献求助10
12秒前
会撒娇的如天关注了科研通微信公众号
13秒前
laxy发布了新的文献求助30
13秒前
14秒前
孟欣玥发布了新的文献求助10
14秒前
excellent_shit完成签到,获得积分10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959179
求助须知:如何正确求助?哪些是违规求助? 3505472
关于积分的说明 11124101
捐赠科研通 3237190
什么是DOI,文献DOI怎么找? 1789003
邀请新用户注册赠送积分活动 871507
科研通“疑难数据库(出版商)”最低求助积分说明 802824