数学
增广拉格朗日法
对偶(序理论)
拉格朗日
整数(计算机科学)
强对偶性
正多边形
圆锥曲线优化
整数规划
凸优化
对偶间隙
凸分析
拉格朗日松弛
数学优化
应用数学
最优化问题
组合数学
几何学
计算机科学
程序设计语言
作者
Avinash Bhardwaj,Vishnu Narayanan,Abhishek Pathapati
摘要
.Augmented Lagrangian dual augments the classical Lagrangian dual with a nonnegative nonlinear penalty function of the violation of the relaxed/dualized constraints in order to reduce the duality gap. We investigate the cases in which mixed integer convex optimization problems have an exact penalty representation using sharp augmenting functions (norms as augmenting penalty functions). We present a generalizable constructive proof technique for proving existence of exact penalty representations for mixed integer convex programs under specific conditions using the associated value functions. This generalizes the recent results for mixed integer linear programming [M. J. Feizollahi, S. Ahmed, and A. Sun, Math. Program., 161 (2017), pp. 365–387] and mixed integer quadratic progamming [X. Gu, S. Ahmed, and S. S. Dey, SIAM J. Optim., 30 (2020), pp. 781–797] while also providing an alternative proof for the aforementioned along with quantification of the finite penalty parameter in these cases.Keywordsmixed integer convex optimizationaugmented Lagrangian dualityexact penalty representationMSC codes90C1190C46
科研通智能强力驱动
Strongly Powered by AbleSci AI