Distinguishing Hashimoto's thyroiditis (HT) lesions from ordinary thyroid tissues is difficult with ultrasound images. Challenges in achieving high performance of HT ultrasound image classification include the low resolution, blurred features and large area of irrelevant noise. To address these problems, we propose a Feature-level Boosting Ensemble Network (FBENet) for HT ultrasound image classification. Specifically, to capture the features of suspicious HT lesions efficiently, an Ensemble Feature Boosting Module (EFBM) is introduced into the feature-level ensemble to boost the blurred features. Then, the spatial attention mechanism is adopted in backbone models to improve the feature focusing performance and representation ability. Furthermore, feature-level ensemble technique is employed in the training process to achieve more comprehensive feature representation ability. Experimentally, FBENet was trained on 6,503 HT ultrasound images, and tested on 1,626 HT ultrasound images with 82.92% accuracy and 89.24% AUC on average.