Identifying the dominant impact factors and their contributions to heatwave events over mainland China

干旱 城市化 气候变化 中国 中国大陆 地理 自然地理学 环境科学 气候学 生态学 生物 考古 地质学
作者
Liaofeng Liang,Linfei Yu,Zhonggen Wang
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:848: 157527-157527 被引量:3
标识
DOI:10.1016/j.scitotenv.2022.157527
摘要

The heatwave frequency and intensity have significantly changed as the climate warms and human activities increase, which poses a potential risk to human society. However, the impact factors that determine the change of heatwave events remain unclear. Here, we estimated the heatwave events based on data from 2474 in-suit gauges during 1960-2018 at daily scale in China. Besides, we explored possible drivers and their contributions to the change of heatwave based on correlation analysis, multiple linear regression (MLR), and random forest (RF) in different subregions of China. The results show that the temporal changes of all heatwave metrics exhibit significant differences between the period 1960-1984 and the period 1985-2019. Spatially, the heatwave frequency and duration significant increase in the southern China (S), eastern arid region (EA), northeastern China (NE), Qinghai-Tibet region (QT) and western arid and semi-arid region (WAS). The occurrence of the first heatwave event in a year tends to be earlier in S, NE, EA, WAS, and QT than before. Based on the regression modelling and RF, human activities play an important role in heatwave intensity in all subregions of China. For heatwave frequency, urbanization generate a dominant influence in NE, EA, and QT, with relative contributions (RC) ranging from 32.8 % to 38.9 %. Long-term climate change exerts the dominant influence in C, N, and S. Moreover, the first day of the yearly heatwave event (HWT) in NE is significantly influenced by climate change, with RC of 33.9 % for temperature variation (TEM). Our findings could provide critical information for understanding the causes of heatwave across different regions of China in the context of rapid urbanization and climate change.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助Xx.采纳,获得10
1秒前
zhangscience发布了新的文献求助10
2秒前
深情安青应助大方嵩采纳,获得10
3秒前
英俊的铭应助大方嵩采纳,获得10
3秒前
李还好完成签到,获得积分10
4秒前
满意的柏柳完成签到,获得积分10
5秒前
6秒前
7秒前
7秒前
buno应助88采纳,获得10
7秒前
8秒前
三千世界完成签到,获得积分10
8秒前
8秒前
愉快的访旋完成签到,获得积分10
9秒前
Alpha完成签到,获得积分10
10秒前
大大发布了新的文献求助30
10秒前
翠翠发布了新的文献求助10
11秒前
半山发布了新的文献求助10
12秒前
12秒前
天天快乐应助CO2采纳,获得10
12秒前
隐形曼青应助junzilan采纳,获得10
13秒前
Dksido发布了新的文献求助10
13秒前
14秒前
思源应助卓哥采纳,获得10
14秒前
mysci完成签到,获得积分10
17秒前
18秒前
Quzhengkai发布了新的文献求助10
19秒前
19秒前
20秒前
落寞晓灵完成签到,获得积分10
20秒前
ORAzzz应助翠翠采纳,获得20
21秒前
zoe完成签到,获得积分10
21秒前
习习应助学术小白采纳,获得10
21秒前
22秒前
23秒前
tianny关注了科研通微信公众号
24秒前
24秒前
CO2发布了新的文献求助10
24秒前
桐桐应助zhangscience采纳,获得10
25秒前
求助发布了新的文献求助10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808