Variation of dominant discharge along the riverbed based on numerical and deep-learning models: A case study in the Middle Huaihe River, China

沉积物 泥沙输移 流量(数学) 稳健性(进化) 阶段(地层学) 地质学 水文学(农业) 环境科学 岩土工程 地貌学 机械 生物化学 基因 物理 古生物学 化学
作者
Jin Xu,Chengxiao Zhang,Lingling Wang,Hai Zhu,Hongwu Tang,Eldad Avital
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:612: 128285-128285 被引量:3
标识
DOI:10.1016/j.jhydrol.2022.128285
摘要

River morphology plays an important role in water environment and resources. The dominant discharge (QD) is a crucial indicator for understanding river morphology and bed evolution under the impact of various interacting processes. At present, the identification of QD mainly depends on the analysis of a large number of hydrological data derived from measuring stations, leading to difficulty in obtaining detailed QD distributions along the study reach. In this paper, QD is approximately expressed as the bed-steadying discharge (QS) which is based on major factors of water level and sediment-carrying capacity. Subsequently, an integrated model combining a numerical fluid-flow and sediment model with a deep-learning algorithm is applied to analyze the changing process of the QS. The flow and sediment transport processes are simulated by the calibrated mathematical model, which are then adopted as the input sequences for the long short-term memory (LSTM) module. The verification results of the established LSTM model show robustness and accuracy in predicting the flow and sediment transport processes under multi-stage incoming flow and sediment conditions. Furthermore, the proposed integrated model is applied to identify the detailed process of QS in the Middle Huaihe River. Results show that the changing process of QS along the study reach is characterized by a particular trend of "increase-decrease-rapid increase" due to natural changes and human activities. Additionally, the QS agrees well with QD at the hydrological station, showing that QS can be applied as an approximation for QD along the study reach. By analyzing longitudinal and transverse profiles, the rationality of using QS as obtained by the newly presented model is demonstrated. Its temporal variation is also consistent with the cross-sectional changes for the specified stations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超帅鸭子发布了新的文献求助10
刚刚
每每反完成签到,获得积分10
2秒前
凡凡完成签到 ,获得积分10
3秒前
4秒前
呆鹅喵喵完成签到,获得积分10
4秒前
忧心的洙完成签到,获得积分10
5秒前
123完成签到,获得积分10
5秒前
青青草完成签到,获得积分10
7秒前
Fang Xianxin完成签到,获得积分20
7秒前
yue发布了新的文献求助10
7秒前
小甘看世界完成签到,获得积分0
9秒前
量子星尘发布了新的文献求助10
9秒前
张今天也要做科研呀完成签到,获得积分10
10秒前
nater3ver完成签到,获得积分10
11秒前
11秒前
自然怀梦完成签到,获得积分10
11秒前
轻歌水越完成签到 ,获得积分10
11秒前
执意完成签到 ,获得积分10
12秒前
大模型应助Coral采纳,获得10
12秒前
songyl完成签到,获得积分10
13秒前
怡然问晴发布了新的文献求助20
14秒前
24K纯帅完成签到,获得积分0
14秒前
LL发布了新的文献求助20
14秒前
飒飒发布了新的文献求助10
16秒前
JamesPei应助幸福广山采纳,获得10
17秒前
莫封叶完成签到,获得积分10
17秒前
iiiau完成签到,获得积分10
18秒前
ersan发布了新的文献求助10
18秒前
小蘑菇完成签到,获得积分10
19秒前
Loooong应助李cc采纳,获得10
19秒前
单纯乞完成签到,获得积分10
19秒前
19秒前
赘婿应助科研通管家采纳,获得10
20秒前
NexusExplorer应助科研通管家采纳,获得10
20秒前
20秒前
搜集达人应助科研通管家采纳,获得10
20秒前
打打应助科研通管家采纳,获得10
20秒前
Mars应助科研通管家采纳,获得10
20秒前
20秒前
7733完成签到,获得积分10
20秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038303
求助须知:如何正确求助?哪些是违规求助? 3576013
关于积分的说明 11374210
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029