Variation of dominant discharge along the riverbed based on numerical and deep-learning models: A case study in the Middle Huaihe River, China

沉积物 泥沙输移 流量(数学) 稳健性(进化) 阶段(地层学) 地质学 水文学(农业) 环境科学 岩土工程 地貌学 机械 生物化学 基因 物理 古生物学 化学
作者
Jin Xu,Chengxiao Zhang,Lingling Wang,Hai Zhu,Hongwu Tang,Eldad Avital
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:612: 128285-128285 被引量:3
标识
DOI:10.1016/j.jhydrol.2022.128285
摘要

River morphology plays an important role in water environment and resources. The dominant discharge (QD) is a crucial indicator for understanding river morphology and bed evolution under the impact of various interacting processes. At present, the identification of QD mainly depends on the analysis of a large number of hydrological data derived from measuring stations, leading to difficulty in obtaining detailed QD distributions along the study reach. In this paper, QD is approximately expressed as the bed-steadying discharge (QS) which is based on major factors of water level and sediment-carrying capacity. Subsequently, an integrated model combining a numerical fluid-flow and sediment model with a deep-learning algorithm is applied to analyze the changing process of the QS. The flow and sediment transport processes are simulated by the calibrated mathematical model, which are then adopted as the input sequences for the long short-term memory (LSTM) module. The verification results of the established LSTM model show robustness and accuracy in predicting the flow and sediment transport processes under multi-stage incoming flow and sediment conditions. Furthermore, the proposed integrated model is applied to identify the detailed process of QS in the Middle Huaihe River. Results show that the changing process of QS along the study reach is characterized by a particular trend of "increase-decrease-rapid increase" due to natural changes and human activities. Additionally, the QS agrees well with QD at the hydrological station, showing that QS can be applied as an approximation for QD along the study reach. By analyzing longitudinal and transverse profiles, the rationality of using QS as obtained by the newly presented model is demonstrated. Its temporal variation is also consistent with the cross-sectional changes for the specified stations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
2秒前
3秒前
花的微笑完成签到,获得积分10
4秒前
二个虎牙发布了新的文献求助10
5秒前
彭于晏应助笑看水墨风光采纳,获得10
5秒前
蓝白胖次哇完成签到,获得积分10
5秒前
6秒前
星辰大海应助喜悦尔岚采纳,获得10
6秒前
Merry完成签到,获得积分10
6秒前
FashionBoy应助鹅1采纳,获得10
6秒前
一颗白菜发布了新的文献求助10
6秒前
小可爱521发布了新的文献求助10
6秒前
menxiaomei发布了新的文献求助10
7秒前
7秒前
GXSH发布了新的文献求助10
7秒前
过时的机器猫完成签到,获得积分10
7秒前
大月兔完成签到,获得积分10
7秒前
科研通AI2S应助飞云采纳,获得10
7秒前
牛的不low的完成签到,获得积分10
7秒前
香蕉觅云应助大力的冬日采纳,获得10
7秒前
李爱国应助风趣的惜天采纳,获得10
7秒前
8秒前
完美世界应助rioo采纳,获得10
8秒前
9秒前
小蘑菇应助阿言采纳,获得10
9秒前
9秒前
欢呼的凌兰完成签到,获得积分10
9秒前
奥斯卡完成签到,获得积分0
10秒前
李月月完成签到,获得积分10
10秒前
万能图书馆应助su采纳,获得10
10秒前
adgcxvjj发布了新的文献求助10
11秒前
龙卷发布了新的文献求助50
11秒前
乐乐应助平常瑛采纳,获得10
11秒前
kingjames发布了新的文献求助10
12秒前
可靠的千凝完成签到 ,获得积分10
13秒前
luiii完成签到,获得积分10
13秒前
Sli完成签到,获得积分10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969222
求助须知:如何正确求助?哪些是违规求助? 3514124
关于积分的说明 11171948
捐赠科研通 3249361
什么是DOI,文献DOI怎么找? 1794799
邀请新用户注册赠送积分活动 875431
科研通“疑难数据库(出版商)”最低求助积分说明 804779