Joint Specifics and Consistency Hash Learning for Large-Scale Cross-Modal Retrieval

计算机科学 散列函数 汉明空间 特征哈希 判别式 人工智能 理论计算机科学 数据挖掘 哈希表 双重哈希 算法 汉明码 计算机安全 解码方法 区块代码
作者
Jianyang Qin,Bob Zhang,Zheng Zhang,Jiangtao Wen,Yong Xu,David Zhang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 5343-5358 被引量:13
标识
DOI:10.1109/tip.2022.3195059
摘要

With the dramatic increase in the amount of multimedia data, cross-modal similarity retrieval has become one of the most popular yet challenging problems. Hashing offers a promising solution for large-scale cross-modal data searching by embedding the high-dimensional data into the low-dimensional similarity preserving Hamming space. However, most existing cross-modal hashing usually seeks a semantic representation shared by multiple modalities, which cannot fully preserve and fuse the discriminative modal-specific features and heterogeneous similarity for cross-modal similarity searching. In this paper, we propose a joint specifics and consistency hash learning method for cross-modal retrieval. Specifically, we introduce an asymmetric learning framework to fully exploit the label information for discriminative hash code learning, where 1) each individual modality can be better converted into a meaningful subspace with specific information, 2) multiple subspaces are semantically connected to capture consistent information, and 3) the integration complexity of different subspaces is overcome so that the learned collaborative binary codes can merge the specifics with consistency. Then, we introduce an alternatively iterative optimization to tackle the specifics and consistency hashing learning problem, making it scalable for large-scale cross-modal retrieval. Extensive experiments on five widely used benchmark databases clearly demonstrate the effectiveness and efficiency of our proposed method on both one-cross-one and one-cross-two retrieval tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
合适猫咪发布了新的文献求助10
刚刚
刚刚
科研通AI5应助吉田清子采纳,获得10
刚刚
迷路的小牛马完成签到,获得积分10
刚刚
方旋完成签到,获得积分10
1秒前
李爱国应助小P采纳,获得10
1秒前
ll完成签到,获得积分10
2秒前
FartKing发布了新的文献求助10
2秒前
震动的坤应助封小封采纳,获得10
2秒前
木木198022完成签到,获得积分10
2秒前
zzz发布了新的文献求助10
3秒前
浮游应助大胆剑身采纳,获得10
3秒前
香蕉觅云应助榴莲柿子茶采纳,获得10
3秒前
joe发布了新的文献求助10
4秒前
上官若男应助李子园采纳,获得10
4秒前
浮游应助石金胜采纳,获得10
4秒前
人云亦云完成签到,获得积分10
4秒前
科研小狗完成签到 ,获得积分10
4秒前
研友_nEWly8发布了新的文献求助10
5秒前
Wuyx完成签到 ,获得积分10
6秒前
6秒前
小蘑菇应助FartKing采纳,获得10
6秒前
烟花应助云淡风轻采纳,获得50
7秒前
精明寒松完成签到 ,获得积分10
7秒前
桐桐应助憨憨的小于采纳,获得10
7秒前
ssss完成签到,获得积分10
7秒前
所所应助多多采纳,获得10
7秒前
yummy完成签到,获得积分10
8秒前
hugo完成签到 ,获得积分10
8秒前
紫薯球完成签到,获得积分10
9秒前
谭文完成签到 ,获得积分10
10秒前
10秒前
Hello应助梅狸猫不读博采纳,获得10
10秒前
笨笨善若发布了新的文献求助10
11秒前
whx完成签到,获得积分10
11秒前
丘比特应助pipipi采纳,获得10
11秒前
11秒前
哈哈哈完成签到,获得积分20
12秒前
旺仔小高完成签到,获得积分20
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5190390
求助须知:如何正确求助?哪些是违规求助? 4374194
关于积分的说明 13620019
捐赠科研通 4227906
什么是DOI,文献DOI怎么找? 2319013
邀请新用户注册赠送积分活动 1317523
关于科研通互助平台的介绍 1267494