Joint Specifics and Consistency Hash Learning for Large-Scale Cross-Modal Retrieval

计算机科学 散列函数 汉明空间 特征哈希 判别式 人工智能 理论计算机科学 数据挖掘 哈希表 双重哈希 算法 汉明码 计算机安全 解码方法 区块代码
作者
Jianyang Qin,Bob Zhang,Zheng Zhang,Jiangtao Wen,Yong Xu,David Zhang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 5343-5358 被引量:13
标识
DOI:10.1109/tip.2022.3195059
摘要

With the dramatic increase in the amount of multimedia data, cross-modal similarity retrieval has become one of the most popular yet challenging problems. Hashing offers a promising solution for large-scale cross-modal data searching by embedding the high-dimensional data into the low-dimensional similarity preserving Hamming space. However, most existing cross-modal hashing usually seeks a semantic representation shared by multiple modalities, which cannot fully preserve and fuse the discriminative modal-specific features and heterogeneous similarity for cross-modal similarity searching. In this paper, we propose a joint specifics and consistency hash learning method for cross-modal retrieval. Specifically, we introduce an asymmetric learning framework to fully exploit the label information for discriminative hash code learning, where 1) each individual modality can be better converted into a meaningful subspace with specific information, 2) multiple subspaces are semantically connected to capture consistent information, and 3) the integration complexity of different subspaces is overcome so that the learned collaborative binary codes can merge the specifics with consistency. Then, we introduce an alternatively iterative optimization to tackle the specifics and consistency hashing learning problem, making it scalable for large-scale cross-modal retrieval. Extensive experiments on five widely used benchmark databases clearly demonstrate the effectiveness and efficiency of our proposed method on both one-cross-one and one-cross-two retrieval tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时势造英雄完成签到 ,获得积分10
刚刚
执着的水杯完成签到,获得积分10
1秒前
1秒前
2秒前
可可完成签到 ,获得积分10
3秒前
善学以致用应助kissssp采纳,获得10
3秒前
4秒前
cy完成签到,获得积分10
5秒前
贾小云完成签到,获得积分10
5秒前
Orange应助accept采纳,获得10
5秒前
6秒前
Lian发布了新的文献求助10
6秒前
123发布了新的文献求助10
7秒前
7秒前
爪人猫发布了新的文献求助10
7秒前
魔幻友菱完成签到 ,获得积分10
7秒前
最爱学习者完成签到,获得积分20
8秒前
寻觅发布了新的文献求助10
9秒前
森sen完成签到 ,获得积分10
10秒前
Maisyuki发布了新的文献求助10
13秒前
13秒前
13秒前
Jupiter 1234发布了新的文献求助20
14秒前
充电宝应助雨天有伞采纳,获得10
16秒前
TJW发布了新的文献求助30
18秒前
19秒前
whh123发布了新的文献求助10
19秒前
19秒前
乞力马扎罗的雪完成签到,获得积分10
19秒前
20秒前
20秒前
热心冷亦完成签到,获得积分10
21秒前
Vege完成签到,获得积分10
22秒前
叶宇豪完成签到,获得积分10
22秒前
五个字的下午完成签到,获得积分10
22秒前
Hancen完成签到,获得积分10
23秒前
爆米花应助nav采纳,获得10
23秒前
kissssp发布了新的文献求助10
24秒前
24秒前
orixero应助乞力马扎罗的雪采纳,获得10
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148165
求助须知:如何正确求助?哪些是违规求助? 2799249
关于积分的说明 7834127
捐赠科研通 2456451
什么是DOI,文献DOI怎么找? 1307282
科研通“疑难数据库(出版商)”最低求助积分说明 628124
版权声明 601655