Joint Specifics and Consistency Hash Learning for Large-Scale Cross-Modal Retrieval

计算机科学 散列函数 汉明空间 特征哈希 判别式 人工智能 理论计算机科学 数据挖掘 哈希表 双重哈希 算法 汉明码 解码方法 计算机安全 区块代码
作者
Jianyang Qin,Bob Zhang,Zheng Zhang,Jiangtao Wen,Yong Xu,David Zhang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 5343-5358 被引量:13
标识
DOI:10.1109/tip.2022.3195059
摘要

With the dramatic increase in the amount of multimedia data, cross-modal similarity retrieval has become one of the most popular yet challenging problems. Hashing offers a promising solution for large-scale cross-modal data searching by embedding the high-dimensional data into the low-dimensional similarity preserving Hamming space. However, most existing cross-modal hashing usually seeks a semantic representation shared by multiple modalities, which cannot fully preserve and fuse the discriminative modal-specific features and heterogeneous similarity for cross-modal similarity searching. In this paper, we propose a joint specifics and consistency hash learning method for cross-modal retrieval. Specifically, we introduce an asymmetric learning framework to fully exploit the label information for discriminative hash code learning, where 1) each individual modality can be better converted into a meaningful subspace with specific information, 2) multiple subspaces are semantically connected to capture consistent information, and 3) the integration complexity of different subspaces is overcome so that the learned collaborative binary codes can merge the specifics with consistency. Then, we introduce an alternatively iterative optimization to tackle the specifics and consistency hashing learning problem, making it scalable for large-scale cross-modal retrieval. Extensive experiments on five widely used benchmark databases clearly demonstrate the effectiveness and efficiency of our proposed method on both one-cross-one and one-cross-two retrieval tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yoyo发布了新的文献求助10
刚刚
爆米花应助崔建采纳,获得10
刚刚
刚刚
dawnyue完成签到,获得积分10
刚刚
xumy完成签到,获得积分20
1秒前
1秒前
慧慧子完成签到,获得积分20
1秒前
2秒前
2秒前
在水一方应助Du采纳,获得10
2秒前
Xdhcg发布了新的文献求助20
3秒前
愿好应助xukaixuan001采纳,获得10
3秒前
4秒前
4秒前
甜美白云完成签到,获得积分20
4秒前
科研通AI2S应助yueyue采纳,获得20
5秒前
JamesPei应助xieyin717采纳,获得10
5秒前
浮游应助自由蓉采纳,获得10
5秒前
啊啊啊完成签到,获得积分10
6秒前
yyf发布了新的文献求助10
6秒前
赘婿应助zhanzhanzhan采纳,获得10
6秒前
6秒前
6秒前
xiuxue424发布了新的文献求助10
7秒前
Owen应助舒心的芝麻采纳,获得10
7秒前
猛小马发布了新的文献求助10
8秒前
写得出发的中完成签到,获得积分10
8秒前
lcm完成签到,获得积分10
8秒前
浮游应助青田101采纳,获得10
9秒前
多宝完成签到,获得积分10
9秒前
英俊的铭应助美好的千凝采纳,获得10
9秒前
大模型应助甲乙丙丁采纳,获得10
9秒前
缥缈灵煌发布了新的文献求助10
9秒前
活力的亦云完成签到,获得积分10
9秒前
春天在这李完成签到,获得积分10
9秒前
酷波er应助yichuan_wangjie采纳,获得10
9秒前
djbj2022发布了新的文献求助10
10秒前
10秒前
冷静的伊完成签到,获得积分10
10秒前
麻坛宗师完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409878
求助须知:如何正确求助?哪些是违规求助? 4527416
关于积分的说明 14110521
捐赠科研通 4441833
什么是DOI,文献DOI怎么找? 2437651
邀请新用户注册赠送积分活动 1429598
关于科研通互助平台的介绍 1407728