Joint Specifics and Consistency Hash Learning for Large-Scale Cross-Modal Retrieval

计算机科学 散列函数 汉明空间 特征哈希 判别式 人工智能 理论计算机科学 数据挖掘 哈希表 双重哈希 算法 汉明码 解码方法 计算机安全 区块代码
作者
Jianyang Qin,Bob Zhang,Zheng Zhang,Jiangtao Wen,Yong Xu,David Zhang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 5343-5358 被引量:13
标识
DOI:10.1109/tip.2022.3195059
摘要

With the dramatic increase in the amount of multimedia data, cross-modal similarity retrieval has become one of the most popular yet challenging problems. Hashing offers a promising solution for large-scale cross-modal data searching by embedding the high-dimensional data into the low-dimensional similarity preserving Hamming space. However, most existing cross-modal hashing usually seeks a semantic representation shared by multiple modalities, which cannot fully preserve and fuse the discriminative modal-specific features and heterogeneous similarity for cross-modal similarity searching. In this paper, we propose a joint specifics and consistency hash learning method for cross-modal retrieval. Specifically, we introduce an asymmetric learning framework to fully exploit the label information for discriminative hash code learning, where 1) each individual modality can be better converted into a meaningful subspace with specific information, 2) multiple subspaces are semantically connected to capture consistent information, and 3) the integration complexity of different subspaces is overcome so that the learned collaborative binary codes can merge the specifics with consistency. Then, we introduce an alternatively iterative optimization to tackle the specifics and consistency hashing learning problem, making it scalable for large-scale cross-modal retrieval. Extensive experiments on five widely used benchmark databases clearly demonstrate the effectiveness and efficiency of our proposed method on both one-cross-one and one-cross-two retrieval tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
浮游应助科研通管家采纳,获得10
刚刚
JamesPei应助科研通管家采纳,获得10
刚刚
Iris发布了新的文献求助40
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
CipherSage应助科研通管家采纳,获得10
1秒前
风清扬应助科研通管家采纳,获得30
1秒前
复杂荟发布了新的文献求助10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
1秒前
Ava应助科研通管家采纳,获得10
1秒前
澈千子发布了新的文献求助10
2秒前
浮游应助安心采纳,获得10
4秒前
丹曦完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
浮游应助舒心的芝麻采纳,获得10
7秒前
田国兵发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
Nancy完成签到 ,获得积分10
8秒前
莎莎士比亚完成签到,获得积分10
8秒前
hjjjjj1发布了新的文献求助10
8秒前
vlots应助zdb采纳,获得30
8秒前
8秒前
keyring完成签到 ,获得积分10
9秒前
9秒前
10秒前
伶俐碧萱完成签到 ,获得积分10
10秒前
Sugar发布了新的文献求助10
11秒前
传奇3应助落后项链采纳,获得10
11秒前
maybe发布了新的文献求助10
11秒前
12秒前
紫色哀伤完成签到,获得积分10
13秒前
acadedog完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4601983
求助须知:如何正确求助?哪些是违规求助? 4011438
关于积分的说明 12419208
捐赠科研通 3691523
什么是DOI,文献DOI怎么找? 2035123
邀请新用户注册赠送积分活动 1068423
科研通“疑难数据库(出版商)”最低求助积分说明 952869