Systematic genetic modifications of cell wall biosynthesis enhanced the secretion and surface-display of polysaccharide degrading enzymes in Saccharomyces cerevisiae

酿酒酵母 分泌物 生物化学 生物合成 酵母 细胞壁 生物 代谢工程 分泌途径 细胞 高尔基体
作者
Nanzhu Chen,Shuo Yang,You Dawei,Junfeng Shen,Banlai Ruan,Mei Wu,Jianzhi Zhang,Xiaozhou Luo,Hongting Tang
出处
期刊:Metabolic Engineering [Elsevier]
卷期号:77: 273-282 被引量:6
标识
DOI:10.1016/j.ymben.2023.04.011
摘要

Saccharomyces cerevisiae is a robust cell factory to secrete or surface-display cellulase and amylase for the conversion of agricultural residues into valuable chemicals. Engineering the secretory pathway is a well-known strategy for overproducing these enzymes. Although cell wall biosynthesis can be tightly linked to the secretory pathway by regulation of all involved processes, the effect of its modifications on protein production has not been extensively studied. In this study, we systematically studied the effect of engineering cell wall biosynthesis on the activity of cellulolytic enzyme β-glucosidase (BGL1) by comparing seventy-nine gene knockout S. cerevisiae strains and newly identified that inactivation of DFG5, YPK1, FYV5, CCW12 and KRE1 obviously improved BGL1 secretion and surface-display. Combinatorial modifications of these genes, particularly double deletion of FVY5 and CCW12, along with the use of rich medium, increased the activity of secreted and surface-displayed BGL1 by 6.13-fold and 7.99-fold, respectively. Additionally, we applied this strategy to improve the activity of the cellulolytic cellobiohydrolase and amylolytic α-amylase. Through proteomic analysis coupled with reverse engineering, we found that in addition to the secretory pathway, regulation of translation processes may also involve in improving enzyme activity by engineering cell wall biosynthesis. Our work provides new insight into the construction of a yeast cell factory for efficient production of polysaccharide degrading enzymes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
咯咯咯发布了新的文献求助10
1秒前
纪沛儿完成签到,获得积分10
2秒前
合适的梦菡完成签到,获得积分10
3秒前
Asdaf发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
5秒前
豆豆应助zzz采纳,获得10
5秒前
喜悦的唇膏完成签到,获得积分20
6秒前
海月关注了科研通微信公众号
6秒前
6秒前
Johnpick完成签到,获得积分0
6秒前
123完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
Quinn发布了新的文献求助10
8秒前
xiaobai完成签到,获得积分10
8秒前
9秒前
云_123发布了新的文献求助10
9秒前
9秒前
丘比特应助支山柳采纳,获得10
10秒前
1111完成签到,获得积分20
11秒前
12秒前
荡秋千的猴子完成签到,获得积分10
12秒前
ding应助结实的问寒采纳,获得10
13秒前
14秒前
14秒前
14秒前
15秒前
Lucas应助WJ1989采纳,获得10
15秒前
ColdSpring完成签到,获得积分10
16秒前
智智发布了新的文献求助10
16秒前
一只小可爱完成签到,获得积分10
17秒前
酷波er应助柏含卉采纳,获得10
18秒前
puff发布了新的文献求助10
18秒前
18秒前
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135577
求助须知:如何正确求助?哪些是违规求助? 2786454
关于积分的说明 7777484
捐赠科研通 2442441
什么是DOI,文献DOI怎么找? 1298558
科研通“疑难数据库(出版商)”最低求助积分说明 625193
版权声明 600847