PoEMS: Policy Network-Based Early Warning Monitoring System for Sepsis in Intensive Care Units

败血症 预警得分 预警系统 重症监护 适应性 计算机科学 病历 预警系统 医学 重症监护医学 人工智能 机器学习 医疗急救 内科学 电信 生态学 生物
作者
Hao Dai,Hsin‐Ginn Hwang,Vincent S. Tseng
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (7): 3610-3621 被引量:3
标识
DOI:10.1109/jbhi.2023.3272486
摘要

Sepsis is among the leading causes of morbidity and mortality in modern intensive care units (ICU). Due to accurate and early warning, the in-time antibiotic treatment of sepsis is critical for improving sepsis outcomes, contributing to saving lives, and reducing medical costs. However, the earlier prediction of sepsis onset is made, the fewer monitoring measurements can be processed, causing a lower prediction accuracy. In contrast, a more accurate prediction can be expected by analyzing more data but leading to the delayed warning associated with life-threatening events. In this study, we propose a novel deep reinforcement learning framework for solving early prediction of sepsis, called the Policy Network-based Early Warning Monitoring System (PoEMS). The proposed PoEMS provides accurate and early prediction results for sepsis onset based on analyzing varied-length electronic medical records (EMR). Furthermore, the system serves by monitoring the patient's health status consistently and provides an early warning only when a high risk of sepsis is detected. Additionally, a controlling parameter is designed for users to adjust the trade-off between earliness and accuracy, providing the adaptability of the model to meet various medical requirements in practical scenarios. Through a series of experiments on real-world medical data, the results demonstrate that our proposed PoEMS achieves a high AUROC result of more than 91% for early prediction, and predicts sepsis onset earlier and more accurately compared to other state-of-the-art competing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
apt应助YNN采纳,获得10
刚刚
1秒前
齐嘉懿完成签到,获得积分0
1秒前
雷雷完成签到,获得积分10
2秒前
zasideler完成签到,获得积分10
4秒前
齐嘉懿发布了新的文献求助10
5秒前
白茶完成签到,获得积分10
9秒前
嘀嗒完成签到 ,获得积分10
14秒前
悟空完成签到,获得积分10
14秒前
17秒前
李健的小迷弟应助we采纳,获得10
18秒前
cecilycen完成签到,获得积分10
18秒前
Lucas应助1337采纳,获得10
19秒前
21秒前
Mask发布了新的文献求助10
22秒前
小石头完成签到 ,获得积分10
22秒前
22秒前
顾矜应助ccccchen采纳,获得30
23秒前
不过敏的橙子完成签到,获得积分10
23秒前
wing完成签到 ,获得积分10
25秒前
27秒前
IKUN完成签到,获得积分10
27秒前
Mask完成签到,获得积分10
27秒前
29秒前
Airy完成签到,获得积分10
29秒前
zplease发布了新的文献求助10
29秒前
鳗鱼冷雪完成签到,获得积分10
30秒前
bkagyin应助很菜的小白菜采纳,获得10
31秒前
33秒前
留守大学生完成签到 ,获得积分10
33秒前
34秒前
科研通AI5应助简单山水采纳,获得10
35秒前
稻草人完成签到,获得积分10
36秒前
36秒前
思源应助Senase采纳,获得10
36秒前
梧桐完成签到,获得积分20
39秒前
caojiarong发布了新的文献求助10
40秒前
Pony完成签到,获得积分10
40秒前
外向一一发布了新的文献求助10
41秒前
稻草人发布了新的文献求助10
45秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737290
求助须知:如何正确求助?哪些是违规求助? 3281158
关于积分的说明 10023202
捐赠科研通 2997821
什么是DOI,文献DOI怎么找? 1644872
邀请新用户注册赠送积分活动 782227
科研通“疑难数据库(出版商)”最低求助积分说明 749731