材料科学
柔性电子器件
灵活的显示器
数码产品
基质(水族馆)
可伸缩电子设备
灵活性(工程)
复合材料
损伤容限
模数
拉伤
弯曲分子几何
图层(电子)
纳米技术
光电子学
薄膜晶体管
电气工程
复合数
工程类
医学
海洋学
统计
数学
地质学
内科学
作者
Hong Hu,Xuyun Guo,Yaokang Zhang,Zijian Chen,Lei Wang,Yuan Gao,Li Wang,Yuqi Zhang,Wenshuo Wang,Mingming Rong,Guoqiang Liu,Qiyao Huang,Ye Zhu,Zijian Zheng
出处
期刊:ACS Nano
[American Chemical Society]
日期:2023-02-10
卷期号:17 (4): 3921-3930
被引量:20
标识
DOI:10.1021/acsnano.2c12269
摘要
The ability to tolerate large strains during various degrees of deformation is a core issue in the development of flexible electronics. Commonly used strategies nowadays to enhance the strain tolerance of thin film devices focus on the optimization of the device architecture and the increase of bonding at the materials interface. In this paper, we propose a strategy, namely elasto-plastic design of an ultrathin interlayer, to boost the strain tolerance of flexible electronics. We demonstrate that insertion of an ultrathin, stiff (high Young's modulus) and elastic (high yield strain) interlayer between an upper rigid film/device and a soft substrate, regardless of the substrate thickness or the interfacial bonding, can significantly reduce the actual strain applied on the film/device when the substrate is bent. Being independent of existing strategies, the elasto-plastic design strategy offers an effective method to enhance the device flexibility without redesigning the device structure or altering the material interface.
科研通智能强力驱动
Strongly Powered by AbleSci AI