Targeted Learning: Toward a Future Informed by Real-World Evidence

加权 倾向得分匹配 非参数统计 因果推理 计算机科学 真实世界的证据 置信区间 匹配(统计) 透明度(行为) 点估计 风险分析(工程) 计量经济学 机器学习 精算学 医学 统计 数学 业务 计算机安全 内科学 放射科
作者
Susan Gruber,Rachael V. Phillips,Hana Lee,Martin Ho,John Concato,Mark J. van der Laan
出处
期刊:Statistics in Biopharmaceutical Research [Taylor & Francis]
卷期号:16 (1): 11-25 被引量:9
标识
DOI:10.1080/19466315.2023.2182356
摘要

The 21st Century Cures Act of 2016 includes a provision for the U.S. Food and Drug Administration10.13039/100000038 (FDA) to evaluate the potential use of Real-World Evidence (RWE) to support new indications for use for previously approved drugs, and to satisfy post-approval study requirements. Extracting reliable evidence from Real-World Data (RWD) is often complicated by a lack of treatment randomization, potential intercurrent events, and informative loss to follow-up. Targeted Learning (TL) is a sub-field of statistics that provides a rigorous framework to help address these challenges. The TL Roadmap offers a step-by-step guide to generating valid evidence and assessing its reliability. Following these steps produces an extensive amount of information for assessing whether the study provides reliable scientific evidence, including in support of regulatory decision-making. This article presents two case studies that illustrate the utility of following the roadmap. We used targeted minimum loss-based estimation combined with super learning to estimate causal effects. We also compared these findings with those obtained from an unadjusted analysis, propensity score matching, and inverse probability weighting. Nonparametric sensitivity analyses illuminate how departures from (untestable) causal assumptions affect point estimates and confidence interval bounds that would impact the substantive conclusion drawn from the study. TL's thorough approach to learning from data provides transparency, allowing trust in RWE to be earned whenever it is warranted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dandna完成签到 ,获得积分10
2秒前
奇点完成签到,获得积分10
5秒前
852应助嘿嘿采纳,获得10
6秒前
6秒前
125完成签到,获得积分10
6秒前
shw完成签到,获得积分10
10秒前
11秒前
双夏完成签到 ,获得积分10
12秒前
xybjt发布了新的文献求助10
12秒前
DC完成签到,获得积分10
13秒前
14秒前
15秒前
啵妞完成签到 ,获得积分10
16秒前
18秒前
jrxjzy完成签到 ,获得积分10
18秒前
兔BF完成签到,获得积分10
18秒前
结实E巧蕊发布了新的文献求助10
19秒前
科研通AI5应助Candice采纳,获得10
21秒前
阿南发布了新的文献求助10
21秒前
LL发布了新的文献求助10
22秒前
22秒前
23秒前
该房地产个人的完成签到,获得积分10
24秒前
25秒前
26秒前
内向的小凡完成签到,获得积分10
26秒前
Solitude_Z完成签到,获得积分10
27秒前
一头熊发布了新的文献求助10
31秒前
MYosotis发布了新的文献求助10
31秒前
32秒前
我是老大应助随遇而安采纳,获得10
33秒前
结实E巧蕊完成签到,获得积分10
35秒前
36秒前
与我月初完成签到,获得积分10
37秒前
杨榆藤完成签到,获得积分10
38秒前
tgoutgou完成签到,获得积分10
40秒前
41秒前
猪猪hero发布了新的文献求助10
41秒前
Candice发布了新的文献求助10
41秒前
星河之外spectator完成签到,获得积分10
42秒前
高分求助中
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 400
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3710041
求助须知:如何正确求助?哪些是违规求助? 3258758
关于积分的说明 9907422
捐赠科研通 2971767
什么是DOI,文献DOI怎么找? 1629612
邀请新用户注册赠送积分活动 772797
科研通“疑难数据库(出版商)”最低求助积分说明 744008