Prediction of the mechanisms of action of Shenkang in chronic kidney disease: A network pharmacology study and experimental validation

丹参 背景(考古学) 系统药理学 中医药 红花属 药品 肾脏疾病 医学 药理学 药物开发 传统医学 计算生物学 内科学 生物 替代医学 病理 古生物学
作者
Tianyu Qin,Lili Wu,Qian Hua,Zilin Song,Yajing Pan,Tonghua Liu
出处
期刊:Journal of Ethnopharmacology [Elsevier BV]
卷期号:246: 112128-112128 被引量:69
标识
DOI:10.1016/j.jep.2019.112128
摘要

Traditional Chinese medicine provides a unique curative treatment of complex chronic diseases, including chronic kidney disease (CKD), which is not effectively treated with the current therapies. The pharmacological mechanisms of Shenkang (SK), a herbal medicine containing rhubarb (Rheum palmatum L. or R. tanguticum Maxim. ex Balf.), red sage (Salvia miltiorrhiza Bunge), safflower (Carthamus tinctorius L.), and astragalus (Astragalus mongholicus Bunge), widely used to treat CKD in China, are still unclear. In this study, the comprehensive approach used for elucidating the pharmacological mechanisms of SK included the identification of the effective constituents, target prediction and network analysis, by investigating the interacting pathways between these molecules in the context of CKD. These results were validated by performing an in vivo study and by comparison with literature reviews. This approach involved the following main steps: first, we constructed a molecular database for SK and screened for active molecules by conducting drug-likeness and drug half-life evaluations; second, we used a weighted ensemble similarity drug-targeting model to accurately identify the direct drug targets of the bioactive constituents; third, we constructed compound–target, target–pathway, and target–disease networks using the Cytoscape 3.2 software and determined the distribution of the targets in tissues and organs according to the BioGPS database. Finally, the resulting drug–target mechanisms were compared with those proposed by previous research on SK and validated in a mouse model of CKD. By using Network analysis, 88 potential bioactive compounds in the four component herbs of SK and 85 CKD-related targets were identified, including pathways that involve the nuclear factor-κB, mitogen-activated protein kinase, transient receptor potential, and vascular endothelial growth factor, which were categorized as inflammation, proliferation, migration, and permeability modules. The results also included different tissues (kidneys, liver, lungs, and heart) and different disease types (urogenital, metabolic, endocrine, cardiovascular, and immune diseases as well as pathological processes) closely related to CKD. These findings agreed with those reported in the literature. However, our findings with the network pharmacology prediction did not account for all the effects reported for SK found in the literature, such as regulation of the hemodynamics, inhibition of oxidative stress and apoptosis, and the involvement of the transforming growth factor-β/SMAD3, sirtuin/forkhead box protein O (SIRT/FOXO) and B-cell lymphoma-2-associated X protein pathways. The in vivo validation experiment revealed that SK ameliorated CKD through antifibrosis and anti-inflammatory effects, by downregulating the levels of vascular cell adhesion protein 1, vitamin D receptor, cyclooxygenase-2, and matrix metalloproteinase 9 proteins in the unilateral ureteral obstruction mouse model. This was consistent with the predicted target and pathway networks. SK exerted a curative effect on CKD and CKD-related diseases by targeting different organs, regulating inflammation and proliferation processes, and inhibiting abnormal extracellular matrix accumulation. Thus, pharmacological network analysis with in vivo validation explained the potential effects and mechanisms of SK in the treatment of CKD. However, these findings need to be further confirmed with clinical studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
医路上的小学生完成签到,获得积分10
刚刚
i十七发布了新的文献求助20
刚刚
gaomeizhen完成签到,获得积分10
刚刚
RenHP完成签到,获得积分10
1秒前
yecheng发布了新的文献求助10
1秒前
1秒前
孔问筠完成签到,获得积分0
2秒前
2秒前
刘小刘认真读研关注了科研通微信公众号
2秒前
yanjiusheng完成签到,获得积分10
3秒前
Owen应助iwww采纳,获得30
3秒前
Sun发布了新的文献求助10
3秒前
ssa11sj完成签到,获得积分10
4秒前
TrishX完成签到 ,获得积分10
4秒前
4秒前
BR发布了新的文献求助10
4秒前
eye完成签到,获得积分10
4秒前
纯真曼凝发布了新的文献求助10
4秒前
5秒前
5秒前
科学飞龙完成签到,获得积分10
5秒前
cc发布了新的文献求助10
5秒前
yecheng完成签到,获得积分10
6秒前
土亢土亢土应助悟空采纳,获得20
6秒前
生生完成签到,获得积分10
7秒前
Eurus发布了新的文献求助10
7秒前
随便取完成签到 ,获得积分10
8秒前
调皮帆布鞋完成签到,获得积分10
8秒前
雨无意完成签到,获得积分10
8秒前
周周完成签到,获得积分10
8秒前
充电宝应助李朝霞采纳,获得10
9秒前
Mr_龙在天涯完成签到,获得积分10
9秒前
小星星完成签到 ,获得积分10
9秒前
科学飞龙发布了新的文献求助10
10秒前
5km发布了新的文献求助10
10秒前
桑榆完成签到,获得积分10
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
wonderingria完成签到,获得积分10
12秒前
冷水完成签到,获得积分10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016068
求助须知:如何正确求助?哪些是违规求助? 3556043
关于积分的说明 11319836
捐赠科研通 3289063
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812044