随机微分方程
应用数学
推论
高斯过程
高斯分布
贝叶斯推理
非参数统计
数学
状态变量
物理
统计物理学
贝叶斯概率
计算机科学
计量经济学
统计
人工智能
热力学
量子力学
标识
DOI:10.1002/andp.201800233
摘要
Abstract The statistical inference of the state variable and the drift function of stochastic differential equations (SDE) from sparsely sampled observations are discussed herein. A variational approach is used to approximate the distribution over the unknown path of the SDE conditioned on the observations. This approach also provides approximations for the intractable likelihood of the drift. The method is combined with a nonparametric Bayesian approach which is based on a Gaussian process prior over drift functions.
科研通智能强力驱动
Strongly Powered by AbleSci AI