融合蛋白
前列腺癌
黑色素瘤
癌症研究
前列腺
跨膜蛋白
癌症
表位
热休克蛋白
融合
融合基因
生物
化学
分子生物学
医学
抗原
免疫学
生物化学
内科学
基因
重组DNA
受体
哲学
语言学
作者
Xuan Chen,Rui Wang,Anji Chen,Yongmei Wang,Yiqin Wang,Zhou Jialei,Rongyue Cao
标识
DOI:10.1016/j.biopha.2019.01.012
摘要
The research of tumor vaccine plays a crucial role in tumor immunotherapy. This study has constructed and prepared a fusion protein vaccine of heat shock protein 65 (HSP65) and the octapeptide epitope 186-193 of the six transmembrane epithelial antigen of the prostate 1 (STEAP1 186-193), and investigated the inhibitory effect of the fusion protein on mouse RM-1 prostate cancer and B16F10 melanoma xenografts. The fusion protein His-HSP65-STEAP1 186-193 (HHST1), His-HSP65-2×STEAP1 186-193 (HHST2) and His-HSP65-6×STEAP1 186-193 (HHST6) were obtained by setting different copy number of STEAP1 186-193 and adding His purification tag before HSP65. Firstly the inhibitory effect of fusion protein on mouse RM-1 prostate cancer xenografts has been studied, which could be the basis of the study the inhibitory effect of the best fusion protein on mouse B16F10 melanoma xenografts. All studies compared with the fusion protein His-HSP65 (HHSP65), the fusion proteins HHST1, HHST2 and HHST6 all could significantly inhibit the growth of mouse RM-1 prostate cancer xenografts. In addition, the fusion protein HHST2 was proved to be the best compared with the fusion proteins HHST1 and HHST6 (P<0.05). Apart from this, compared with the fusion protein HHSP65, the fusion protein HHST2 also significantly inhibited the growth of mouse beared B16F10 melanoma. The results above indicate that HSP65 and STEAP1 186-193 can significantly inhibit the growth of mouse RM-1 prostate cancer and B16F10 melanoma xenografts, and the appropriate increase of copy number can effectively improve that the fusion protein has an excellent anti-tumor ability.
科研通智能强力驱动
Strongly Powered by AbleSci AI