Automatic classification of ultrasound breast lesions using a deep convolutional neural network mimicking human decision-making

医学 卷积神经网络 神经组阅片室 超声波 放射科 乳房成像 乳腺超声检查 接收机工作特性 人工智能 双雷达 乳腺摄影术 计算机科学 乳腺癌 内科学 神经学 癌症 精神科
作者
Alexander Ciritsis,Cristina Rossi,Matthias Eberhard,Magda Marcon,Anton S. Becker,Andreas Boss
出处
期刊:European Radiology [Springer Nature]
卷期号:29 (10): 5458-5468 被引量:106
标识
DOI:10.1007/s00330-019-06118-7
摘要

To evaluate a deep convolutional neural network (dCNN) for detection, highlighting, and classification of ultrasound (US) breast lesions mimicking human decision-making according to the Breast Imaging Reporting and Data System (BI-RADS). One thousand nineteen breast ultrasound images from 582 patients (age 56.3 ± 11.5 years) were linked to the corresponding radiological report. Lesions were categorized into the following classes: no tissue, normal breast tissue, BI-RADS 2 (cysts, lymph nodes), BI-RADS 3 (non-cystic mass), and BI-RADS 4–5 (suspicious). To test the accuracy of the dCNN, one internal dataset (101 images) and one external test dataset (43 images) were evaluated by the dCNN and two independent readers. Radiological reports, histopathological results, and follow-up examinations served as reference. The performances of the dCNN and the humans were quantified in terms of classification accuracies and receiver operating characteristic (ROC) curves. In the internal test dataset, the classification accuracy of the dCNN differentiating BI-RADS 2 from BI-RADS 3–5 lesions was 87.1% (external 93.0%) compared with that of human readers with 79.2 ± 1.9% (external 95.3 ± 2.3%). For the classification of BI-RADS 2–3 versus BI-RADS 4–5, the dCNN reached a classification accuracy of 93.1% (external 95.3%), whereas the classification accuracy of humans yielded 91.6 ± 5.4% (external 94.1 ± 1.2%). The AUC on the internal dataset was 83.8 (external 96.7) for the dCNN and 84.6 ± 2.3 (external 90.9 ± 2.9) for the humans. dCNNs may be used to mimic human decision-making in the evaluation of single US images of breast lesion according to the BI-RADS catalog. The technique reaches high accuracies and may serve for standardization of highly observer-dependent US assessment. • Deep convolutional neural networks could be used to classify US breast lesions. • The implemented dCNN with its sliding window approach reaches high accuracies in the classification of US breast lesions. • Deep convolutional neural networks may serve for standardization in US BI-RADS classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
好困应助魔幻若血采纳,获得10
2秒前
2秒前
领导范儿应助鞑靼采纳,获得10
3秒前
echo发布了新的文献求助10
3秒前
3秒前
热心的善愁完成签到,获得积分10
4秒前
彼岸发布了新的文献求助10
4秒前
5秒前
赵姐姐完成签到 ,获得积分10
7秒前
xiao双月发布了新的文献求助10
7秒前
8秒前
无花果应助Shaw采纳,获得10
8秒前
小黄发布了新的文献求助10
8秒前
9秒前
9秒前
姗姗完成签到,获得积分10
9秒前
雪飞杨发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
11秒前
朱颜发布了新的文献求助10
11秒前
YL发布了新的文献求助10
12秒前
12秒前
毛123完成签到,获得积分10
12秒前
喵了个咪发布了新的文献求助10
13秒前
华仔应助lupeichun采纳,获得10
13秒前
13秒前
14秒前
高贵以南完成签到,获得积分10
14秒前
淡定的仙人掌完成签到,获得积分10
14秒前
1325850238发布了新的文献求助10
15秒前
zly发布了新的文献求助10
15秒前
15秒前
外向一一发布了新的文献求助30
15秒前
隐形曼青应助Wenpandaen采纳,获得10
16秒前
16秒前
16秒前
孟孟发布了新的文献求助10
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148415
求助须知:如何正确求助?哪些是违规求助? 2799563
关于积分的说明 7835686
捐赠科研通 2456891
什么是DOI,文献DOI怎么找? 1307645
科研通“疑难数据库(出版商)”最低求助积分说明 628217
版权声明 601655