清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

MA05.11 Radiomics Analysis Using SVM Predicts Mediastinal Lymph Nodes Status of Squamous Cell Lung Cancer by Pre-Treatment Chest CT Scan

医学 放射科 肺癌 纵隔淋巴结 无线电技术 淋巴结 转移 癌症 肿瘤科 病理 内科学
作者
X. Wang,W. Nan,Yan Shi,Q. Li,Ning Guo,Zhe Guo
出处
期刊:Journal of Thoracic Oncology [Elsevier]
卷期号:13 (10): S374-S374 被引量:5
标识
DOI:10.1016/j.jtho.2018.08.357
摘要

Assessment of mediastinal lymph nodes (N2 station) is essential in staging patients with Non-small-cell lung cancer (NSCLC), for patients with preoperative confirmed N2 status should follow neoadjuvant therapy before surgery, and occult N2 status should be avoided. There are several invasive and non-invasive exams available for preoperative N staging, like EBUS-TBNA and PET-CT scan. Chest CT scan was the basic examination of every patient, while only the length of minor axis could be used to predict lymph node involvement, and the potential value of CT might be underestimated. In this study we aimed to explore the value of radiomics analysis with machine learning in differentiating N2 from N1/N0 subjects using pre-treatment chest CT. Ninety-three patients with squamous cell lung cancer, who underwent pre-treatment CT scans were included in this study. By use of Laplacian of Gaussian (LoG) filter and matrix based radiomics models (e.g. gray-level co-occurrence matrix), comprehensive radiomics features were extracted from the regions of interest which were manually delineated on primary tumors. We performed radiomics analysis using support vector machine (SVM) to test texture and heterogeneity features derived from pre-treatment CT images as indicators for the staging of lymph node metastasis, especially N2. The gold standard of N staging is confirmed pathologically after systematic mediastinal lymphadenectomy (N2 subjects=31). For the performance evaluation of single image feature, there are 16 features able to differentiate N2 subjects from others (N0 and N1) with p value <0.05. Furthermore, SVM training and classification were performed using 5-feature combinations as inputs. With feature selection, the best performance of N2 prediction is 83% accuracy with 87% sensitivity and 81% specificity. Radiomics analysis using SVM training can successfully predict N staging by pre-treatment chest CT scan for NSCLC patients, which could diminish the odds of occult N2 status and provide unique information preoperatively for treatment planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
cccchang发布了新的文献求助10
18秒前
直率的笑翠完成签到 ,获得积分10
20秒前
002完成签到,获得积分10
23秒前
1分钟前
僵尸吃掉了我的脑子完成签到 ,获得积分10
1分钟前
萝卜猪完成签到,获得积分10
1分钟前
cccchang完成签到,获得积分20
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
YXY完成签到 ,获得积分10
3分钟前
激动的似狮完成签到,获得积分10
3分钟前
科科研研up完成签到,获得积分10
3分钟前
3分钟前
LeoBigman完成签到 ,获得积分10
4分钟前
tt完成签到,获得积分10
4分钟前
zzh完成签到,获得积分20
4分钟前
001完成签到,获得积分0
4分钟前
gtgyh完成签到 ,获得积分10
5分钟前
涛1完成签到 ,获得积分10
5分钟前
害怕的恶天完成签到,获得积分10
5分钟前
sunwsmile完成签到 ,获得积分10
5分钟前
田様应助科研通管家采纳,获得10
5分钟前
5分钟前
oleskarabach发布了新的文献求助10
5分钟前
gqw3505完成签到,获得积分10
5分钟前
在水一方完成签到,获得积分0
6分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
隐形曼青应助zzh采纳,获得10
6分钟前
cjn发布了新的文献求助10
6分钟前
6分钟前
zzh发布了新的文献求助10
7分钟前
Hiraeth完成签到 ,获得积分10
8分钟前
yyds完成签到,获得积分0
8分钟前
睡够了不困完成签到,获得积分10
8分钟前
汪鸡毛完成签到 ,获得积分10
8分钟前
Harrison完成签到,获得积分10
8分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5450132
求助须知:如何正确求助?哪些是违规求助? 4558026
关于积分的说明 14265309
捐赠科研通 4481397
什么是DOI,文献DOI怎么找? 2454792
邀请新用户注册赠送积分活动 1445571
关于科研通互助平台的介绍 1421511