亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MA05.11 Radiomics Analysis Using SVM Predicts Mediastinal Lymph Nodes Status of Squamous Cell Lung Cancer by Pre-Treatment Chest CT Scan

医学 放射科 肺癌 纵隔淋巴结 无线电技术 淋巴结 转移 癌症 肿瘤科 病理 内科学
作者
X. Wang,W. Nan,Yan Shi,Q. Li,Ning Guo,Zhe Guo
出处
期刊:Journal of Thoracic Oncology [Elsevier]
卷期号:13 (10): S374-S374 被引量:5
标识
DOI:10.1016/j.jtho.2018.08.357
摘要

Assessment of mediastinal lymph nodes (N2 station) is essential in staging patients with Non-small-cell lung cancer (NSCLC), for patients with preoperative confirmed N2 status should follow neoadjuvant therapy before surgery, and occult N2 status should be avoided. There are several invasive and non-invasive exams available for preoperative N staging, like EBUS-TBNA and PET-CT scan. Chest CT scan was the basic examination of every patient, while only the length of minor axis could be used to predict lymph node involvement, and the potential value of CT might be underestimated. In this study we aimed to explore the value of radiomics analysis with machine learning in differentiating N2 from N1/N0 subjects using pre-treatment chest CT. Ninety-three patients with squamous cell lung cancer, who underwent pre-treatment CT scans were included in this study. By use of Laplacian of Gaussian (LoG) filter and matrix based radiomics models (e.g. gray-level co-occurrence matrix), comprehensive radiomics features were extracted from the regions of interest which were manually delineated on primary tumors. We performed radiomics analysis using support vector machine (SVM) to test texture and heterogeneity features derived from pre-treatment CT images as indicators for the staging of lymph node metastasis, especially N2. The gold standard of N staging is confirmed pathologically after systematic mediastinal lymphadenectomy (N2 subjects=31). For the performance evaluation of single image feature, there are 16 features able to differentiate N2 subjects from others (N0 and N1) with p value <0.05. Furthermore, SVM training and classification were performed using 5-feature combinations as inputs. With feature selection, the best performance of N2 prediction is 83% accuracy with 87% sensitivity and 81% specificity. Radiomics analysis using SVM training can successfully predict N staging by pre-treatment chest CT scan for NSCLC patients, which could diminish the odds of occult N2 status and provide unique information preoperatively for treatment planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
boboo发布了新的文献求助10
1秒前
花陵完成签到 ,获得积分10
2秒前
jiabu完成签到 ,获得积分10
22秒前
自然的清涟应助袁青寒采纳,获得10
38秒前
思源应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
gmc完成签到 ,获得积分10
1分钟前
1分钟前
boboo完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
论文写到头秃完成签到,获得积分10
2分钟前
陈打铁完成签到,获得积分10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
Suraim完成签到,获得积分10
3分钟前
老石完成签到 ,获得积分10
3分钟前
Antares完成签到,获得积分10
4分钟前
Owen应助顺利甜瓜采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
大胆菲音发布了新的文献求助30
6分钟前
科目三应助科研通管家采纳,获得10
7分钟前
Criminology34应助科研通管家采纳,获得10
7分钟前
科研蓝月发布了新的文献求助150
8分钟前
9分钟前
科研蓝月完成签到,获得积分10
9分钟前
9分钟前
我亦化身东海去完成签到,获得积分10
9分钟前
打打应助我亦化身东海去采纳,获得10
9分钟前
pursu发布了新的文献求助10
9分钟前
愉快的犀牛完成签到 ,获得积分10
9分钟前
Dengjia完成签到,获得积分20
9分钟前
Weiyu完成签到 ,获得积分10
9分钟前
Criminology34应助科研通管家采纳,获得10
11分钟前
Criminology34应助科研通管家采纳,获得10
11分钟前
Criminology34应助科研通管家采纳,获得10
11分钟前
TXZ06完成签到,获得积分10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5357350
求助须知:如何正确求助?哪些是违规求助? 4488767
关于积分的说明 13972523
捐赠科研通 4390037
什么是DOI,文献DOI怎么找? 2411854
邀请新用户注册赠送积分活动 1404415
关于科研通互助平台的介绍 1378666