MA05.11 Radiomics Analysis Using SVM Predicts Mediastinal Lymph Nodes Status of Squamous Cell Lung Cancer by Pre-Treatment Chest CT Scan

医学 放射科 肺癌 纵隔淋巴结 无线电技术 淋巴结 转移 癌症 肿瘤科 病理 内科学
作者
X. Wang,W. Nan,Yan Shi,Q. Li,Ning Guo,Zhe Guo
出处
期刊:Journal of Thoracic Oncology [Elsevier]
卷期号:13 (10): S374-S374 被引量:5
标识
DOI:10.1016/j.jtho.2018.08.357
摘要

Assessment of mediastinal lymph nodes (N2 station) is essential in staging patients with Non-small-cell lung cancer (NSCLC), for patients with preoperative confirmed N2 status should follow neoadjuvant therapy before surgery, and occult N2 status should be avoided. There are several invasive and non-invasive exams available for preoperative N staging, like EBUS-TBNA and PET-CT scan. Chest CT scan was the basic examination of every patient, while only the length of minor axis could be used to predict lymph node involvement, and the potential value of CT might be underestimated. In this study we aimed to explore the value of radiomics analysis with machine learning in differentiating N2 from N1/N0 subjects using pre-treatment chest CT. Ninety-three patients with squamous cell lung cancer, who underwent pre-treatment CT scans were included in this study. By use of Laplacian of Gaussian (LoG) filter and matrix based radiomics models (e.g. gray-level co-occurrence matrix), comprehensive radiomics features were extracted from the regions of interest which were manually delineated on primary tumors. We performed radiomics analysis using support vector machine (SVM) to test texture and heterogeneity features derived from pre-treatment CT images as indicators for the staging of lymph node metastasis, especially N2. The gold standard of N staging is confirmed pathologically after systematic mediastinal lymphadenectomy (N2 subjects=31). For the performance evaluation of single image feature, there are 16 features able to differentiate N2 subjects from others (N0 and N1) with p value <0.05. Furthermore, SVM training and classification were performed using 5-feature combinations as inputs. With feature selection, the best performance of N2 prediction is 83% accuracy with 87% sensitivity and 81% specificity. Radiomics analysis using SVM training can successfully predict N staging by pre-treatment chest CT scan for NSCLC patients, which could diminish the odds of occult N2 status and provide unique information preoperatively for treatment planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Uykizhao发布了新的文献求助10
1秒前
2秒前
cccw关注了科研通微信公众号
2秒前
2秒前
baby的跑男发布了新的文献求助10
3秒前
流砂完成签到,获得积分10
3秒前
3秒前
檬檬完成签到,获得积分10
5秒前
125ljw发布了新的文献求助10
6秒前
R喻andom完成签到,获得积分10
7秒前
熊二浪发布了新的文献求助10
8秒前
科研通AI2S应助Uykizhao采纳,获得10
8秒前
9秒前
Jeffery426发布了新的文献求助10
9秒前
10秒前
纾汐L完成签到,获得积分10
10秒前
11秒前
乖乖不叮咚完成签到,获得积分10
11秒前
11秒前
斯文败类应助一一采纳,获得10
11秒前
11秒前
着急的小蘑菇完成签到,获得积分10
12秒前
orixero应助光亮的元龙采纳,获得30
12秒前
13秒前
13秒前
qgjvjypm发布了新的文献求助30
14秒前
王涉发布了新的文献求助10
14秒前
Foldog完成签到,获得积分10
14秒前
默默文博应助明理念桃采纳,获得20
14秒前
15秒前
张天宝真的爱科研完成签到,获得积分10
15秒前
16秒前
纾汐L发布了新的文献求助10
16秒前
Alan_Mcwave发布了新的文献求助10
16秒前
17秒前
song发布了新的文献求助10
17秒前
白子双发布了新的文献求助10
18秒前
NexusExplorer应助pasi采纳,获得10
18秒前
小张呢好完成签到,获得积分10
20秒前
20秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Handbook of the Mammals of the World – Volume 3: Primates 600
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Livre et militantisme : La Cité éditeur 1958-1967 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3064861
求助须知:如何正确求助?哪些是违规求助? 2719509
关于积分的说明 7464373
捐赠科研通 2366025
什么是DOI,文献DOI怎么找? 1254285
科研通“疑难数据库(出版商)”最低求助积分说明 608899
版权声明 596684