Electro-Fenton degradation of ciprofloxacin with highly ordered mesoporous MnCo2O4-CF cathode: Enhanced redox capacity and accelerated electron transfer

氧化还原 电子转移 介孔材料 阴极 化学 化学工程 降级(电信) 材料科学 催化作用 光化学 有机化学 电气工程 冶金 工程类 物理化学
作者
Xueyue Mi,Yi Li,Xingming Ning,Jinhu Jia,Haitao Wang,Yuguo Xia,Yan Sun,Sihui Zhan
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:358: 299-309 被引量:91
标识
DOI:10.1016/j.cej.2018.10.047
摘要

The emergence of antibiotics in the environment, especially in drinking water, poses potential harm to human health. It’s urgent to develop effective methods to remove antibiotics in drinking water. In this work, a series of mesoporous MnxCo3−xO4 nanoparticles with high surface area were successfully synthesized and firstly used as effective stable electro-Fenton catalysts to degrade ciprofloxacin (CIP). The removal of CIP achieved to 100% within 5 h. Experimental and density functional theory (DFT) studies verified the existence of redox pairs of Mn2+/Mn3+ and Co2+/Co3+. Scanning electrochemical microscopy (SECM) results suggested that the redox reaction capacity of MnCo2O4 was enhanced and the electron transfer rate on the surface of this bimetallic oxide was 2.67 and 1.6 times the number of MnO2 and Co3O4, respectively. The effective degradation of CIP was mainly associated with the increased electron transfer rate and advanced redox reactivity owing to the synergistic effect of manganese and cobalt entrapped in the matrix of mesoporous structure which provided more accessible active sites. The degradation intermediates and possible process mechanism were investigated in detail. The reusability of MnCo2O4-CF cathode was evaluated five cycles with minimal ion leaching which the concentration of Mn and Co in the system was lower than 2.5 and 3.4 ppm, respectively. This work provides further understanding for removal process of organic pollutants by investigation of redox couple and electron transfer rate of the promising MnCo2O4-CF cathode.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
刚刚
所所应助欢喜的跳跳糖采纳,获得10
刚刚
1秒前
充电宝应助春花采纳,获得10
1秒前
科研通AI6.1应助2526采纳,获得10
1秒前
华仔应助222采纳,获得10
2秒前
YiyueChan完成签到,获得积分10
3秒前
三寸日光发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
科研通AI6.1应助Sue采纳,获得10
5秒前
6秒前
lilili完成签到,获得积分10
6秒前
bob应助满意的不二采纳,获得10
6秒前
7秒前
7秒前
小二郎应助Feng采纳,获得10
7秒前
Criminology34应助xh采纳,获得10
9秒前
合适夏天发布了新的文献求助10
9秒前
丘比特应助hjc采纳,获得10
9秒前
amin完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
12秒前
12秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
谢颖俊完成签到,获得积分10
15秒前
15秒前
ZZY发布了新的文献求助10
16秒前
深情安青应助林二车娜姆采纳,获得10
16秒前
杠杠发布了新的文献求助10
16秒前
jh完成签到,获得积分10
16秒前
17秒前
传奇3应助创不可贴采纳,获得10
18秒前
南风完成签到,获得积分10
19秒前
TBHP完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
中国脑卒中防治报告 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5826235
求助须知:如何正确求助?哪些是违规求助? 6014209
关于积分的说明 15568922
捐赠科研通 4946518
什么是DOI,文献DOI怎么找? 2664888
邀请新用户注册赠送积分活动 1610627
关于科研通互助平台的介绍 1565616