亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Discovering the Type 2 Diabetes in Electronic Health Records Using the Sparse Balanced Support Vector Machine

可解释性 过度拟合 机器学习 计算机科学 人工智能 支持向量机 大数据 数据挖掘 人工神经网络
作者
Michele Bernardini,Luca Romeo,Paolo Misericordia,Emanuele Frontoni
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (1): 235-246 被引量:94
标识
DOI:10.1109/jbhi.2019.2899218
摘要

The diagnosis of type 2 diabetes (T2D) at an early stage has a key role for an adequate T2D integrated management system and patient's follow-up. Recent years have witnessed an increasing amount of available electronic health record (EHR) data and machine learning (ML) techniques have been considerably evolving. However, managing and modeling this amount of information may lead to several challenges, such as overfitting, model interpretability, and computational cost. Starting from these motivations, we introduced an ML method called sparse balanced support vector machine (SB-SVM) for discovering T2D in a novel collected EHR dataset (named Federazione Italiana Medici di Medicina Generale dataset). In particular, among all the EHR features related to exemptions, examination, and drug prescriptions, we have selected only those collected before T2D diagnosis from an uniform age group of subjects. We demonstrated the reliability of the introduced approach with respect to other ML and deep learning approaches widely employed in the state-of-the-art for solving this task. Results evidence that the SB-SVM overcomes the other state-of-the-art competitors providing the best compromise between predictive performance and computation time. Additionally, the induced sparsity allows to increase the model interpretability, while implicitly managing high-dimensional data and the usual unbalanced class distribution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
Hasee完成签到 ,获得积分10
9秒前
18秒前
33秒前
46秒前
1分钟前
1分钟前
jianwuzhou发布了新的文献求助10
1分钟前
宝可梦的春天完成签到,获得积分10
1分钟前
1分钟前
在水一方应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
英姑应助迅速易云采纳,获得10
2分钟前
科研通AI2S应助jianwuzhou采纳,获得50
2分钟前
gaoyue完成签到,获得积分10
2分钟前
3分钟前
3分钟前
Wilson完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
jianwuzhou完成签到,获得积分10
4分钟前
jianwuzhou发布了新的文献求助50
4分钟前
4分钟前
4分钟前
三尺缺口完成签到,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
Radish完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
迅速易云发布了新的文献求助10
6分钟前
6分钟前
6分钟前
7分钟前
科研小弟完成签到,获得积分10
7分钟前
7分钟前
7分钟前
研友_VZG7GZ应助是是是采纳,获得10
7分钟前
打打应助LeiYuanfang采纳,获得10
7分钟前
8分钟前
老石完成签到 ,获得积分10
8分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466835
求助须知:如何正确求助?哪些是违规求助? 3059635
关于积分的说明 9067260
捐赠科研通 2750124
什么是DOI,文献DOI怎么找? 1509045
科研通“疑难数据库(出版商)”最低求助积分说明 697124
邀请新用户注册赠送积分活动 696896