Local ecological knowledge indicators for wild plant management: Autonomous local monitoring in Prespa, Albania

环境资源管理 公民新闻 公民科学 资源(消歧) 地理 生物多样性 认证 栖息地 绘图(图形) 环境规划 生态学 环境科学 生物 政治学 计算机科学 统计 植物 法学 数学 计算机网络
作者
Sabrina Tomasini,Ida Theilade
出处
期刊:Ecological Indicators [Elsevier]
卷期号:101: 1064-1076 被引量:22
标识
DOI:10.1016/j.ecolind.2019.01.076
摘要

Broad consensus affirms the need to better understand the status and trends of biodiversity and the important role that local ecological knowledge (LEK) plays in establishing successful monitoring programs. Although often present, autonomous local monitoring systems are frequently ignored by externally-driven community-based or participatory conservation projects. Here we explore the autonomous LEK-led monitoring carried out by local medicinal plant harvesters to guide the management and harvesting of six locally useful medicinal plant species in Prespa National Park, Albania. Open and semi-structured interviews with harvesters (n = 22), National Park staff (n = 2) and scientific advisors (n = 2) were combined with participatory mapping, joint plot assessments with key informants and a science-led ecological plot survey. Results suggest that harvesters possessed detailed LEK and adopted a variety of socio-economic, management, ecological and environmental indicators to assess wild resources and inform their harvest practices. LEK- and science-led plot assessments generally agreed on most monitoring aspects, suggesting that LEK indicators were relevant and LEK-based perceptions were accurate and could be used to assess the status and trends of useful species. However, while LEK focused on the harvestable resource; i.e. certain individuals and plant parts, the science-based approach assessed plant populations as a whole. Official monitoring based on existing LEK-led monitoring appears to be feasible, but LEK may be more appropriate for monitoring resources for wild harvesting or certification purposes than for 'pure' conservation monitoring of plant populations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
css发布了新的文献求助10
刚刚
sush1hang发布了新的文献求助10
2秒前
astalavista发布了新的文献求助10
2秒前
研友_V8Qmr8发布了新的文献求助10
2秒前
甜的瓜发布了新的文献求助10
2秒前
4秒前
5秒前
木子发布了新的文献求助10
5秒前
科研通AI2S应助安详的谷槐采纳,获得10
7秒前
竹斟酒应助王毅采纳,获得10
12秒前
zjl094完成签到,获得积分10
13秒前
dapao完成签到,获得积分10
13秒前
赘婿应助Singularity采纳,获得10
16秒前
16秒前
彳亍1117应助阿飞采纳,获得10
16秒前
16秒前
16秒前
17秒前
17秒前
希望天下0贩的0应助duang采纳,获得10
18秒前
18秒前
18秒前
JQKing完成签到,获得积分10
19秒前
sniffgo发布了新的文献求助10
21秒前
ynscw发布了新的文献求助10
21秒前
哈人的猫发布了新的文献求助10
21秒前
华仔应助sush1hang采纳,获得10
22秒前
南安完成签到 ,获得积分10
23秒前
tlight1740发布了新的文献求助200
23秒前
23秒前
aria发布了新的文献求助10
23秒前
了了发布了新的文献求助10
23秒前
24秒前
马克关注了科研通微信公众号
25秒前
26秒前
小二郎应助AtGaP采纳,获得10
27秒前
豆浆油条完成签到,获得积分10
27秒前
astalavista完成签到,获得积分10
27秒前
28秒前
可靠的马丁完成签到,获得积分10
31秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125633
求助须知:如何正确求助?哪些是违规求助? 2775924
关于积分的说明 7728426
捐赠科研通 2431401
什么是DOI,文献DOI怎么找? 1291999
科研通“疑难数据库(出版商)”最低求助积分说明 622301
版权声明 600376