已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Online Monitoring Machining Errors of Thin-Walled Workpiece: A Knowledge Embedded Sparse Bayesian Regression Approach

机械加工 贝叶斯概率 回归 计算机科学 回归分析 人工智能 机器学习 模式识别(心理学) 统计 数学 工程类 机械工程
作者
Le Cao,Xiao-Ming Zhang,Tao Huang,Han Ding
出处
期刊:IEEE-ASME Transactions on Mechatronics [Institute of Electrical and Electronics Engineers]
卷期号:24 (3): 1259-1270 被引量:23
标识
DOI:10.1109/tmech.2019.2912195
摘要

Deflection of the tool and workpiece caused by cutting forces usually leads to machining errors of thin-walled workpieces. Monitoring this kind of force-induced errors plays an extremely important role in controlling and compensating the deflection-related machining failures in real time. However, accompanied by time consuming and complicated computations, now available analytical prediction methods cannot satisfy the requirements of online machining errors prediction. Hence, data-driven regression methods are introduced to online predict the machining errors. The challenges lie in that: first, the spatial continuous distribution of machining errors needs to be constructed via limited measured points; second, the regression model must have high generalization performance to adapt varied cutting parameters; and third, the model complexity should be restrained to improve the real-time performance. To tackling these challenges, a knowledge embedded regression is presented to model the relationship between machining error and cutting parameters, cutting location, as well as online measured cutting forces. The physical mechanism about machining errors is integrated into the model for improving the generalization accuracy. A Gaussian prior distribution over the model weights is introduced to reduce the model redundancy, for the sake of learning the weight variables with limited samples and increasing the prediction efficiency. Results have indicated that the predicted machining errors by the proposed model accords with the measurement better than those predicted by a purely data-dependent regression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gideon完成签到,获得积分10
1秒前
科研通AI2S应助良药采纳,获得10
3秒前
lingo发布了新的文献求助10
3秒前
加减乘除完成签到,获得积分10
4秒前
大力的宝川完成签到 ,获得积分10
4秒前
BruceQ完成签到,获得积分10
5秒前
Rjy完成签到 ,获得积分10
5秒前
曾经沛白完成签到 ,获得积分10
5秒前
General完成签到 ,获得积分10
7秒前
舒服的摇伽完成签到 ,获得积分10
7秒前
Lyncon完成签到,获得积分10
7秒前
feiCheung完成签到 ,获得积分10
7秒前
团宝妞宝完成签到,获得积分10
9秒前
9秒前
小m完成签到 ,获得积分10
9秒前
在水一方应助加减乘除采纳,获得10
10秒前
孟筱完成签到 ,获得积分10
10秒前
超级微笑完成签到 ,获得积分10
11秒前
Carrots完成签到 ,获得积分10
11秒前
zhi芝完成签到 ,获得积分10
11秒前
犹豫千儿完成签到,获得积分10
11秒前
Capybara发布了新的文献求助10
14秒前
專注完美近乎苛求完成签到 ,获得积分10
15秒前
gwh完成签到 ,获得积分10
16秒前
16秒前
努力的咩咩完成签到 ,获得积分10
17秒前
Dannnn完成签到 ,获得积分10
17秒前
山猫大王完成签到 ,获得积分10
17秒前
吃饱再睡完成签到 ,获得积分10
19秒前
li完成签到 ,获得积分10
19秒前
甄的艾你完成签到,获得积分10
19秒前
WW完成签到 ,获得积分10
19秒前
追寻哲瀚完成签到 ,获得积分10
20秒前
葡萄味的果茶完成签到 ,获得积分10
20秒前
22秒前
zkkz完成签到,获得积分10
22秒前
不学习的牛蛙完成签到 ,获得积分10
23秒前
766465完成签到 ,获得积分0
23秒前
HUO完成签到 ,获得积分10
23秒前
pathway完成签到 ,获得积分10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956896
求助须知:如何正确求助?哪些是违规求助? 3502967
关于积分的说明 11110753
捐赠科研通 3233948
什么是DOI,文献DOI怎么找? 1787671
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802210

今日热心研友

coolkid
10
zhongu
10
尤苏福
10
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10