Online Monitoring Machining Errors of Thin-Walled Workpiece: A Knowledge Embedded Sparse Bayesian Regression Approach

机械加工 贝叶斯概率 回归 计算机科学 回归分析 人工智能 机器学习 模式识别(心理学) 统计 数学 工程类 机械工程
作者
Le Cao,Xiao-Ming Zhang,Tao Huang,Han Ding
出处
期刊:IEEE-ASME Transactions on Mechatronics [Institute of Electrical and Electronics Engineers]
卷期号:24 (3): 1259-1270 被引量:23
标识
DOI:10.1109/tmech.2019.2912195
摘要

Deflection of the tool and workpiece caused by cutting forces usually leads to machining errors of thin-walled workpieces. Monitoring this kind of force-induced errors plays an extremely important role in controlling and compensating the deflection-related machining failures in real time. However, accompanied by time consuming and complicated computations, now available analytical prediction methods cannot satisfy the requirements of online machining errors prediction. Hence, data-driven regression methods are introduced to online predict the machining errors. The challenges lie in that: first, the spatial continuous distribution of machining errors needs to be constructed via limited measured points; second, the regression model must have high generalization performance to adapt varied cutting parameters; and third, the model complexity should be restrained to improve the real-time performance. To tackling these challenges, a knowledge embedded regression is presented to model the relationship between machining error and cutting parameters, cutting location, as well as online measured cutting forces. The physical mechanism about machining errors is integrated into the model for improving the generalization accuracy. A Gaussian prior distribution over the model weights is introduced to reduce the model redundancy, for the sake of learning the weight variables with limited samples and increasing the prediction efficiency. Results have indicated that the predicted machining errors by the proposed model accords with the measurement better than those predicted by a purely data-dependent regression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
纳米完成签到,获得积分10
刚刚
林伯格发布了新的文献求助10
刚刚
刚刚
bkagyin应助虚心的纸鹤采纳,获得10
刚刚
无敌暴龙战神完成签到,获得积分20
1秒前
现实的听芹完成签到,获得积分10
1秒前
1秒前
1秒前
残月下的樱花完成签到,获得积分10
1秒前
iNk应助大大怪采纳,获得10
2秒前
Olives完成签到,获得积分10
2秒前
2秒前
iceice完成签到,获得积分10
2秒前
堵得慌完成签到,获得积分20
2秒前
2秒前
二手的科学家完成签到,获得积分10
3秒前
jyee完成签到,获得积分10
3秒前
3秒前
狗十七完成签到 ,获得积分10
3秒前
4秒前
完美世界应助kiki采纳,获得10
4秒前
堵得慌发布了新的文献求助10
5秒前
swityha发布了新的文献求助10
5秒前
大模型应助小宋宋采纳,获得10
5秒前
机灵飞珍完成签到 ,获得积分20
5秒前
水合氯醛发布了新的文献求助10
6秒前
6秒前
6秒前
8秒前
付传奎发布了新的文献求助10
8秒前
暴躁的咖啡完成签到,获得积分10
9秒前
微笑的觅露完成签到 ,获得积分10
9秒前
迅速寻桃发布了新的文献求助10
9秒前
清脆的雨梅完成签到 ,获得积分10
10秒前
小鱼完成签到,获得积分10
10秒前
Refuel发布了新的文献求助10
11秒前
11秒前
852应助丽优采纳,获得10
11秒前
11秒前
爆米花应助李刚采纳,获得10
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147171
求助须知:如何正确求助?哪些是违规求助? 2798462
关于积分的说明 7829305
捐赠科研通 2455179
什么是DOI,文献DOI怎么找? 1306639
科研通“疑难数据库(出版商)”最低求助积分说明 627858
版权声明 601567