马拉特1
同源盒蛋白纳米
癌症研究
癌症干细胞
转移
生物
干细胞
小RNA
结直肠癌
肿瘤微环境
癌症
长非编码RNA
细胞生物学
胚胎干细胞
下调和上调
遗传学
诱导多能干细胞
基因
肿瘤细胞
作者
Dongxin Tang,Zhu Yang,Fengxi Long,Li Luo,Bing Yang,Ruyi Zhu,Xianan Sang,Gang Cao,Kuilong Wang
摘要
Abstract Cancer stem cells (CSCs) are crucial components of the tumor microenvironment that take part in tumor initiation, progression, recurrence, metastasis, and resistance to chemotherapy. This study explores the mechanisms through which CSCs maintain their stemness, especially in tumors of colorectal cancer (CRC), which thus far remain uncertain. Our findings indicated that the expression of miR‐20b‐5p is negatively correlated with that of metastasis‐associated lung adenocarcinoma transcript‐1 (MALAT1, r = −0.928, p = 0.023) and Oct4 ( r = −0.894, p = 0.041) in CRC cells. We hypothesized that there may be some targeted regulatory relationships among MALAT1, miR‐20b‐5p, and Oct4. We proceeded to show that both si‐MALAT1 and miR‐20b‐5p‐mimic attenuated microsphere formation and self‐renewal capacity, decreased the proportion of CSCs, and downregulated the expression of proteins associated with tumor cell stemness maintenance (Oct4, Nanog, sex‐determining region Y‐box 2, and Notch1) and cellular metabolism (glucose transporter 1, lactate dehydrogenase B, hexokinase 2, and pyruvate kinase isozyme M2) in HCT‐116 cells in vitro. In addition, a xenograft model based on Balb/c mice demonstrated that the administration of either si‐MALAT1 or miR‐20b‐5p‐mimic suppressed the tumorigenicity of HCT‐116 cells in vivo. The underlying mechanisms may involve the targeting of the tumor cell stemness maintenance‐related factor Oct4 by miR‐20b‐5p. For the first time, we present the possible underlying effects of MALAT1 in influencing the stem cell‐like properties of CRC cells. We propose that microRNAs and long noncoding RNAs have vital functions in mediating tumor stemness, which remain to be fully elucidated.
科研通智能强力驱动
Strongly Powered by AbleSci AI