阳极
硅
碳纤维
锂(药物)
材料科学
化学气相沉积
化学工程
电化学
图层(电子)
纳米技术
光电子学
化学
电极
复合材料
复合数
工程类
物理化学
内分泌学
医学
作者
Li Hou,Huajun Zheng,Ruiwen Cui,Jiang Yang,Qian Li,Xinyu Jiang,Jiajia Gao,Faming Gao
标识
DOI:10.1016/j.micromeso.2018.08.014
摘要
The theoretical capacity of the silicon electrode is very high, but the large volume change of Si during the charge and discharge processes leads to a fast capacity fading and thus a poor cycling stability. Here, in order to overcome this shortcoming, a new method for preparing silicon electrode materials was proposed. We employed a facile Chemical Vapor Deposition (CVD) process to produce uniform carbon layer to cover the silicon spheres, etched a space between the carbon layer and the silicon nucleus to accommodate the expansion of silicon during charging and discharging, and thus a well-designed chain-like [email protected]@C electrode material was prepared. The thickness of the carbon shell was tuned simply by adjusting CVD deposition time. The stability of such silicon electrode was proved to be significantly enhanced. By a comparative study on [email protected]@C, [email protected] and the commercial pure Si without carbon coating, we have demonstrated that the thin but stable carbon shell and the rationally designed void space in the [email protected]@C structure have greatly positive influences on the electrochemical performance. As a result, the chain-like [email protected]@C-15 exhibits a reversible capacity of 983 mA h g−1 after 200 cycles and a high capacity retention up to 94%, indicating an excellent cycling stability. Good rate performance is also demonstrated.
科研通智能强力驱动
Strongly Powered by AbleSci AI