Silicon carbon nanohybrids with expandable space: A high-performance lithium battery anodes

阳极 碳纤维 锂(药物) 材料科学 化学气相沉积 化学工程 电化学 图层(电子) 涂层 纳米技术 光电子学 化学 电极 复合材料 复合数 工程类 物理化学 内分泌学 医学
作者
Li Hou,Hongyu Zheng,Ruiwen Cui,Yang Jiang,Qian Li,Xinyu Jiang,Jiajia Gao,Faming Gao
出处
期刊:Microporous and Mesoporous Materials [Elsevier]
卷期号:275: 42-49 被引量:41
标识
DOI:10.1016/j.micromeso.2018.08.014
摘要

The theoretical capacity of the silicon electrode is very high, but the large volume change of Si during the charge and discharge processes leads to a fast capacity fading and thus a poor cycling stability. Here, in order to overcome this shortcoming, a new method for preparing silicon electrode materials was proposed. We employed a facile Chemical Vapor Deposition (CVD) process to produce uniform carbon layer to cover the silicon spheres, etched a space between the carbon layer and the silicon nucleus to accommodate the expansion of silicon during charging and discharging, and thus a well-designed chain-like [email protected]@C electrode material was prepared. The thickness of the carbon shell was tuned simply by adjusting CVD deposition time. The stability of such silicon electrode was proved to be significantly enhanced. By a comparative study on [email protected]@C, [email protected] and the commercial pure Si without carbon coating, we have demonstrated that the thin but stable carbon shell and the rationally designed void space in the [email protected]@C structure have greatly positive influences on the electrochemical performance. As a result, the chain-like [email protected]@C-15 exhibits a reversible capacity of 983 mA h g−1 after 200 cycles and a high capacity retention up to 94%, indicating an excellent cycling stability. Good rate performance is also demonstrated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
by完成签到,获得积分10
1秒前
1秒前
1秒前
清浅发布了新的文献求助30
2秒前
太想进部了完成签到,获得积分10
2秒前
2秒前
JamesPei应助干净的友卉采纳,获得10
2秒前
打打应助今天没有哭鸭采纳,获得10
2秒前
JamesPei应助易烊千玺老婆采纳,获得10
2秒前
2秒前
3秒前
852应助SYX采纳,获得30
3秒前
斯文败类应助小小小小采纳,获得10
3秒前
科研通AI6应助HAHA采纳,获得10
3秒前
坚定晓兰应助HAHA采纳,获得10
3秒前
科研通AI6应助HAHA采纳,获得10
3秒前
热心的易烟完成签到,获得积分10
3秒前
4秒前
Hello应助小学生采纳,获得10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
song发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
alvis关注了科研通微信公众号
6秒前
LingMg发布了新的文献求助30
7秒前
不安溪灵完成签到,获得积分10
7秒前
7秒前
7秒前
熊猫海发布了新的文献求助10
7秒前
8秒前
伞下铭发布了新的文献求助10
8秒前
8秒前
9秒前
Herzing发布了新的文献求助10
9秒前
9秒前
喜悦发卡完成签到,获得积分10
10秒前
小青椒应助斯文明杰采纳,获得30
10秒前
斯文凝蕊发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667047
求助须知:如何正确求助?哪些是违规求助? 4883873
关于积分的说明 15118527
捐赠科研通 4825937
什么是DOI,文献DOI怎么找? 2583643
邀请新用户注册赠送积分活动 1537807
关于科研通互助平台的介绍 1496002