DeepRCI: Predicting ATP-Binding Proteins Using the Residue-Residue Contact Information

卷积神经网络 计算机科学 超参数 残留物(化学) 三磷酸腺苷 结合位点 人工智能 数据挖掘 化学 模式识别(心理学) 生物系统 生物化学 生物
作者
Zhaoxi Zhang,Yulan Zhao,Juan Wang,Maozu Guo
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (6): 2822-2829 被引量:2
标识
DOI:10.1109/jbhi.2021.3137840
摘要

Adenine-5'-triphosphate (ATP) is a direct energy source for various activities of tissues and cells in the body. The release of ATP energies requires the assistance of ATP-binding proteins. Therefore, the identification of ATP-binding proteins is of great significance for the research on organisms. So far, there are several methods for predicting ATP-binding proteins. However, the accuracies of these methods are so low that the predicted proteins are inaccurate. Here, we designed a novel method, called as DeepRCI (based on Deep convolutional neural network and Residue-residue Contact Information), for predicting ATP-binding proteins. In order to maximize the performance of our method, we experimented with different hyperparameters and finally chose a 12-depth-512-filters deep convolutional neural network with an input size of 448*448. By using this model, DeepRCI achieved an accuracy of 93.61% on the test set which means a significant improvement of 11.78% over the state-of-the-art methods. We also compared the performance of residue-residue contact information datasets with different noise levels which are mainly due to gaps in the multiple sequence alignment. Compared with the low-noise dataset, the prediction accuracy on the high-noise dataset is reduced by 6.78%, which affects the performance of DeepRCI to a certain extent. We believe that with the increase of sequence data, this problem will eventually be solved. Finally, we provide a web service of DeepRCI which link can be obtained in Data Availability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助che采纳,获得10
1秒前
猫or人发布了新的文献求助10
2秒前
平淡的翅膀完成签到 ,获得积分10
4秒前
145263发布了新的文献求助10
5秒前
蒋丞完成签到,获得积分10
6秒前
烧烤发布了新的文献求助20
7秒前
顺利的夜梦完成签到,获得积分10
7秒前
9秒前
彭于晏应助滴滴答答采纳,获得10
10秒前
145263完成签到,获得积分20
13秒前
英俊的铭应助双子玖兰莒采纳,获得10
13秒前
贝贝发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
子车采蓝发布了新的文献求助10
14秒前
爱听歌的寄云完成签到,获得积分10
14秒前
lllllllulu完成签到 ,获得积分10
15秒前
16秒前
cling发布了新的文献求助10
17秒前
烧烤完成签到,获得积分10
18秒前
19秒前
Binbin发布了新的文献求助10
21秒前
CodeCraft应助淡淡芯采纳,获得10
21秒前
21秒前
22秒前
zkqzzz完成签到 ,获得积分10
23秒前
24秒前
浮游应助che采纳,获得10
25秒前
赘婿应助子车采蓝采纳,获得10
26秒前
27秒前
Lili完成签到,获得积分10
27秒前
英俊的铭应助默默采纳,获得10
28秒前
克劳德发布了新的文献求助10
28秒前
123发布了新的文献求助20
30秒前
嘉欣发布了新的文献求助10
31秒前
开朗若之完成签到 ,获得积分10
31秒前
32秒前
猫or人完成签到,获得积分10
32秒前
华仔应助善善采纳,获得10
35秒前
科研通AI6应助善良的采蓝采纳,获得10
38秒前
灯没点发布了新的文献求助10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5420968
求助须知:如何正确求助?哪些是违规求助? 4535922
关于积分的说明 14151957
捐赠科研通 4452682
什么是DOI,文献DOI怎么找? 2442496
邀请新用户注册赠送积分活动 1433930
关于科研通互助平台的介绍 1411024