Structure Diversity-Induced Anchor Graph Fusion for Multi-View Clustering

聚类分析 计算机科学 图形 理论计算机科学 聚类系数 数据挖掘 人工智能
作者
Xun Lu,Songhe Feng
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:17 (2): 1-18 被引量:16
标识
DOI:10.1145/3534931
摘要

The anchor graph structure has been widely used to speed up large-scale multi-view clustering and exhibited promising performance. How to effectively integrate the anchor graphs on multiple views to achieve enhanced clustering performance still remains a challenging task. Existing fusing strategies ignore the structure diversity among anchor graphs and restrict the anchor generation to be same on different views, which degenerates the representation ability of corresponding fused consensus graph. To overcome these drawbacks, we propose a novel structural fusion framework to integrate the multi-view anchor graphs for clustering. Different from traditional integration strategies, we merge the anchors and edges of all the view-specific anchor graphs into a single graph for the structural optimal graph learning. Benefiting from the structural fusion strategy, the anchor generation of each view is not forced to be same, which greatly improves the representation capability of the target structural optimal graph, since the anchors of each view capture the diverse structure of different views. By leveraging the potential structural consistency among each anchor graph, a connectivity constraint is imposed on the target graph to indicate clusters directly without any post-processing such as k -means in classical spectral clustering. Substantial experiments on real-world datasets are conducted to verify the superiority of the proposed method, as compared with the state-of-the-arts over the clustering performance and time expenditure.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄启烽发布了新的文献求助10
刚刚
刚刚
脑洞疼应助LT采纳,获得10
2秒前
专注的安青完成签到 ,获得积分10
2秒前
李健应助qqq采纳,获得10
2秒前
2秒前
有魅力的朋友完成签到,获得积分10
4秒前
xiaofei完成签到 ,获得积分20
4秒前
充电宝应助lin采纳,获得10
5秒前
5秒前
酷波er应助动人的黄豆采纳,获得10
6秒前
杜明智发布了新的文献求助10
6秒前
6秒前
6秒前
小吴完成签到,获得积分10
6秒前
一叶孤舟发布了新的文献求助10
6秒前
Xy完成签到,获得积分10
7秒前
Hello应助微笑糖豆采纳,获得10
7秒前
Owen应助粗心的初蓝采纳,获得10
7秒前
Xingkun_li完成签到,获得积分10
8秒前
桐桐应助sherry采纳,获得10
8秒前
图雄争霸给图雄争霸的求助进行了留言
8秒前
希望天下0贩的0应助am采纳,获得10
9秒前
深情凡灵发布了新的文献求助10
10秒前
11秒前
吃个馍馍发布了新的文献求助10
11秒前
11秒前
英俊的铭应助sun采纳,获得10
12秒前
petrichor发布了新的文献求助10
13秒前
liuyuanhao完成签到,获得积分10
14秒前
hoshinoluo发布了新的文献求助10
14秒前
buno应助嵩嵩采纳,获得10
15秒前
月流瓦发布了新的文献求助10
15秒前
ZJJ完成签到,获得积分10
16秒前
16秒前
16秒前
烤鸭卷饼发布了新的文献求助10
17秒前
123完成签到,获得积分10
18秒前
慕青应助lym97采纳,获得30
18秒前
叮咚完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602452
求助须知:如何正确求助?哪些是违规求助? 4687577
关于积分的说明 14849885
捐赠科研通 4684010
什么是DOI,文献DOI怎么找? 2539871
邀请新用户注册赠送积分活动 1506630
关于科研通互助平台的介绍 1471428