Structure Diversity-Induced Anchor Graph Fusion for Multi-View Clustering

聚类分析 计算机科学 图形 理论计算机科学 聚类系数 数据挖掘 人工智能
作者
Xun Lu,Songhe Feng
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:17 (2): 1-18 被引量:16
标识
DOI:10.1145/3534931
摘要

The anchor graph structure has been widely used to speed up large-scale multi-view clustering and exhibited promising performance. How to effectively integrate the anchor graphs on multiple views to achieve enhanced clustering performance still remains a challenging task. Existing fusing strategies ignore the structure diversity among anchor graphs and restrict the anchor generation to be same on different views, which degenerates the representation ability of corresponding fused consensus graph. To overcome these drawbacks, we propose a novel structural fusion framework to integrate the multi-view anchor graphs for clustering. Different from traditional integration strategies, we merge the anchors and edges of all the view-specific anchor graphs into a single graph for the structural optimal graph learning. Benefiting from the structural fusion strategy, the anchor generation of each view is not forced to be same, which greatly improves the representation capability of the target structural optimal graph, since the anchors of each view capture the diverse structure of different views. By leveraging the potential structural consistency among each anchor graph, a connectivity constraint is imposed on the target graph to indicate clusters directly without any post-processing such as k -means in classical spectral clustering. Substantial experiments on real-world datasets are conducted to verify the superiority of the proposed method, as compared with the state-of-the-arts over the clustering performance and time expenditure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助jingjing采纳,获得10
1秒前
2秒前
3秒前
舒适的藏花完成签到 ,获得积分10
4秒前
无花果应助加减乘除采纳,获得10
4秒前
yannick发布了新的文献求助10
5秒前
正月初九发布了新的文献求助10
5秒前
darling完成签到,获得积分10
8秒前
kangkirk发布了新的文献求助10
8秒前
10秒前
12秒前
hy完成签到 ,获得积分10
12秒前
麻辣梗儿完成签到 ,获得积分10
13秒前
阿彤沐完成签到,获得积分20
13秒前
14秒前
yxq发布了新的文献求助10
15秒前
搜集达人应助ccc采纳,获得10
15秒前
17秒前
17秒前
土豆子完成签到,获得积分10
18秒前
正月初九完成签到,获得积分10
18秒前
18秒前
goufufu完成签到,获得积分10
19秒前
华仔应助zsp采纳,获得10
19秒前
疑惑虫发布了新的文献求助10
19秒前
啦啦啦大萝卜完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
21秒前
21秒前
ZZQ发布了新的文献求助10
23秒前
郭大壮完成签到,获得积分20
24秒前
无花果应助a东采纳,获得10
25秒前
25秒前
nxy完成签到 ,获得积分10
26秒前
科目三应助yannick采纳,获得10
26秒前
29秒前
yxq完成签到,获得积分10
29秒前
30秒前
彭于晏应助跳跃雅青采纳,获得10
30秒前
30秒前
Gaowenjie发布了新的文献求助10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5069715
求助须知:如何正确求助?哪些是违规求助? 4290967
关于积分的说明 13369157
捐赠科研通 4111230
什么是DOI,文献DOI怎么找? 2251352
邀请新用户注册赠送积分活动 1256540
关于科研通互助平台的介绍 1189031