Structure Diversity-Induced Anchor Graph Fusion for Multi-View Clustering

聚类分析 计算机科学 图形 理论计算机科学 聚类系数 数据挖掘 人工智能
作者
Xun Lu,Songhe Feng
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:17 (2): 1-18 被引量:16
标识
DOI:10.1145/3534931
摘要

The anchor graph structure has been widely used to speed up large-scale multi-view clustering and exhibited promising performance. How to effectively integrate the anchor graphs on multiple views to achieve enhanced clustering performance still remains a challenging task. Existing fusing strategies ignore the structure diversity among anchor graphs and restrict the anchor generation to be same on different views, which degenerates the representation ability of corresponding fused consensus graph. To overcome these drawbacks, we propose a novel structural fusion framework to integrate the multi-view anchor graphs for clustering. Different from traditional integration strategies, we merge the anchors and edges of all the view-specific anchor graphs into a single graph for the structural optimal graph learning. Benefiting from the structural fusion strategy, the anchor generation of each view is not forced to be same, which greatly improves the representation capability of the target structural optimal graph, since the anchors of each view capture the diverse structure of different views. By leveraging the potential structural consistency among each anchor graph, a connectivity constraint is imposed on the target graph to indicate clusters directly without any post-processing such as k -means in classical spectral clustering. Substantial experiments on real-world datasets are conducted to verify the superiority of the proposed method, as compared with the state-of-the-arts over the clustering performance and time expenditure.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
mol发布了新的文献求助10
刚刚
greenghost关注了科研通微信公众号
1秒前
1秒前
gao发布了新的文献求助10
1秒前
失眠的青筠完成签到,获得积分10
2秒前
2秒前
飘逸楷瑞发布了新的文献求助30
2秒前
劲秉应助xqqlgq采纳,获得10
3秒前
无花果应助顺利毕业采纳,获得30
3秒前
LinglongCai完成签到 ,获得积分10
3秒前
3秒前
4秒前
4秒前
4秒前
MingqingFang发布了新的文献求助10
5秒前
爆米花应助矮小的睫毛采纳,获得10
5秒前
pym关注了科研通微信公众号
6秒前
潜竹发布了新的文献求助10
7秒前
小蘑菇应助顺利毕业采纳,获得10
7秒前
8秒前
SHAN发布了新的文献求助10
8秒前
木通发布了新的文献求助10
9秒前
路奇k发布了新的文献求助10
9秒前
CipherSage应助稳重的擎苍采纳,获得10
10秒前
约三十应助干净柏柳采纳,获得10
10秒前
昵称完成签到,获得积分10
10秒前
向峻熙发布了新的文献求助10
11秒前
慕青应助淡淡半山采纳,获得10
11秒前
顺利毕业发布了新的文献求助10
12秒前
Fergusonxiong应助阿越采纳,获得10
12秒前
12秒前
心想事成发布了新的文献求助10
14秒前
酷波er应助潜竹采纳,获得10
14秒前
greenghost发布了新的文献求助10
15秒前
路奇k完成签到,获得积分10
16秒前
秋听寒发布了新的文献求助10
16秒前
手术刀完成签到 ,获得积分10
17秒前
ding应助jennie采纳,获得10
18秒前
Orange应助burn采纳,获得10
18秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206565
求助须知:如何正确求助?哪些是违规求助? 2856045
关于积分的说明 8102101
捐赠科研通 2521097
什么是DOI,文献DOI怎么找? 1354139
科研通“疑难数据库(出版商)”最低求助积分说明 641924
邀请新用户注册赠送积分活动 613167