Application of machine learning techniques to model a full-scale wastewater treatment plant with biological nutrient removal

均方误差 人工神经网络 机器学习 支持向量机 计算机科学 人工智能 过程(计算) 数学 统计 操作系统
作者
Mohamed Sherif Zaghloul,Gopal Achari
出处
期刊:Journal of environmental chemical engineering [Elsevier]
卷期号:10 (3): 107430-107430 被引量:51
标识
DOI:10.1016/j.jece.2022.107430
摘要

A full-scale biological nutrient removal wastewater treatment process was simulated using artificial intelligence. In wastewater treatment plants, adaptive machine learning models can reduce process disruptions and generate savings through optimized operation. Machine learning is also useful when simulating processes that are particularly complex and where the physio-chemical interactions are not well understood, such as biological nutrients removal. Current models in literature only focus on the prediction of a small number of effluent parameters using a direct input-output approach. This paper presents a machine learning ensemble model that combines artificial neural networks, adaptive neuro-fuzzy inference systems, and support vector regression to predict 15 process parameters that include biomass properties, operation parameters, and effluent characteristics. A historical dataset between 2010 and 2020 was used to develop and validate the model. The model features a six-stage modular model structure where each parameter was predicted using a separate model and based on the preceding predicted parameters. The average correlation coefficient, normalized root mean square error, and symmetric mean absolute error of 69%, 0.06%, and 7.5%, respectively. The ensemble approach improved the average prediction accuracy over individual base models by 5%. The model developed in this study was more versatile than other machine learning models in the literature and relatively reduced the ambiguity of black-box data-driven models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
蜀安应助氮源采纳,获得30
1秒前
LBQ完成签到,获得积分10
1秒前
hush完成签到,获得积分10
2秒前
所所应助尾巴抓不住我采纳,获得10
2秒前
2秒前
毛小驴完成签到,获得积分10
3秒前
4秒前
Richard发布了新的文献求助10
5秒前
李爱国应助顺心的尔安采纳,获得10
5秒前
LHLDP发布了新的文献求助20
6秒前
当当完成签到 ,获得积分10
6秒前
曹影完成签到,获得积分10
6秒前
6秒前
浮游应助科研通管家采纳,获得20
6秒前
浮游应助科研通管家采纳,获得10
7秒前
pluto应助科研通管家采纳,获得10
7秒前
7秒前
自由凝蕊完成签到 ,获得积分10
7秒前
平淡初雪应助科研通管家采纳,获得10
7秒前
7秒前
wanci应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
李健应助PANYIAO采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
zyf发布了新的文献求助10
8秒前
pluto应助科研通管家采纳,获得10
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
无极微光应助科研通管家采纳,获得20
8秒前
浮游应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
无极微光应助科研通管家采纳,获得20
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
ding发布了新的文献求助10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
隐形曼青应助小巧的向露采纳,获得10
8秒前
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478095
求助须知:如何正确求助?哪些是违规求助? 4579824
关于积分的说明 14371025
捐赠科研通 4508054
什么是DOI,文献DOI怎么找? 2470401
邀请新用户注册赠送积分活动 1457273
关于科研通互助平台的介绍 1431249