Application of machine learning techniques to model a full-scale wastewater treatment plant with biological nutrient removal

均方误差 人工神经网络 机器学习 支持向量机 计算机科学 人工智能 过程(计算) 数学 统计 操作系统
作者
Mohamed Sherif Zaghloul,Gopal Achari
出处
期刊:Journal of environmental chemical engineering [Elsevier]
卷期号:10 (3): 107430-107430 被引量:51
标识
DOI:10.1016/j.jece.2022.107430
摘要

A full-scale biological nutrient removal wastewater treatment process was simulated using artificial intelligence. In wastewater treatment plants, adaptive machine learning models can reduce process disruptions and generate savings through optimized operation. Machine learning is also useful when simulating processes that are particularly complex and where the physio-chemical interactions are not well understood, such as biological nutrients removal. Current models in literature only focus on the prediction of a small number of effluent parameters using a direct input-output approach. This paper presents a machine learning ensemble model that combines artificial neural networks, adaptive neuro-fuzzy inference systems, and support vector regression to predict 15 process parameters that include biomass properties, operation parameters, and effluent characteristics. A historical dataset between 2010 and 2020 was used to develop and validate the model. The model features a six-stage modular model structure where each parameter was predicted using a separate model and based on the preceding predicted parameters. The average correlation coefficient, normalized root mean square error, and symmetric mean absolute error of 69%, 0.06%, and 7.5%, respectively. The ensemble approach improved the average prediction accuracy over individual base models by 5%. The model developed in this study was more versatile than other machine learning models in the literature and relatively reduced the ambiguity of black-box data-driven models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
骑羊发布了新的文献求助20
1秒前
科研通AI2S应助大白采纳,获得10
4秒前
阳光友蕊完成签到 ,获得积分10
5秒前
陈橙发布了新的文献求助20
5秒前
7秒前
Faye完成签到 ,获得积分10
8秒前
哇哈哈哈哈哈完成签到,获得积分20
8秒前
沉默老四完成签到,获得积分20
10秒前
Penny完成签到 ,获得积分10
10秒前
Godyo完成签到,获得积分10
11秒前
11秒前
tjr完成签到,获得积分10
11秒前
12秒前
Akim应助Manyiu采纳,获得10
12秒前
12秒前
快乐应助张豪杰采纳,获得10
13秒前
刘科江发布了新的文献求助10
13秒前
tianzml0举报求助违规成功
14秒前
加菲丰丰举报求助违规成功
14秒前
iNk举报求助违规成功
14秒前
14秒前
chinning发布了新的文献求助30
14秒前
beizn1214完成签到,获得积分10
16秒前
小星星完成签到,获得积分10
17秒前
17秒前
Jasper应助Diego采纳,获得10
18秒前
骑羊完成签到,获得积分10
20秒前
失眠绝音完成签到,获得积分10
21秒前
chinning完成签到,获得积分10
22秒前
快乐应助tuanheqi采纳,获得20
23秒前
ding应助Erich采纳,获得10
24秒前
26秒前
mojomars完成签到,获得积分10
28秒前
小凯应助张一楠采纳,获得10
30秒前
山茶发布了新的文献求助10
30秒前
hhh完成签到,获得积分10
30秒前
LLII完成签到,获得积分10
30秒前
左右不为难完成签到,获得积分10
30秒前
刚好夏天完成签到 ,获得积分10
31秒前
32秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162727
求助须知:如何正确求助?哪些是违规求助? 2813601
关于积分的说明 7901404
捐赠科研通 2473189
什么是DOI,文献DOI怎么找? 1316684
科研通“疑难数据库(出版商)”最低求助积分说明 631482
版权声明 602175