Application of machine learning techniques to model a full-scale wastewater treatment plant with biological nutrient removal

均方误差 人工神经网络 机器学习 支持向量机 计算机科学 人工智能 过程(计算) 数学 统计 操作系统
作者
Mohamed Sherif Zaghloul,Gopal Achari
出处
期刊:Journal of environmental chemical engineering [Elsevier]
卷期号:10 (3): 107430-107430 被引量:51
标识
DOI:10.1016/j.jece.2022.107430
摘要

A full-scale biological nutrient removal wastewater treatment process was simulated using artificial intelligence. In wastewater treatment plants, adaptive machine learning models can reduce process disruptions and generate savings through optimized operation. Machine learning is also useful when simulating processes that are particularly complex and where the physio-chemical interactions are not well understood, such as biological nutrients removal. Current models in literature only focus on the prediction of a small number of effluent parameters using a direct input-output approach. This paper presents a machine learning ensemble model that combines artificial neural networks, adaptive neuro-fuzzy inference systems, and support vector regression to predict 15 process parameters that include biomass properties, operation parameters, and effluent characteristics. A historical dataset between 2010 and 2020 was used to develop and validate the model. The model features a six-stage modular model structure where each parameter was predicted using a separate model and based on the preceding predicted parameters. The average correlation coefficient, normalized root mean square error, and symmetric mean absolute error of 69%, 0.06%, and 7.5%, respectively. The ensemble approach improved the average prediction accuracy over individual base models by 5%. The model developed in this study was more versatile than other machine learning models in the literature and relatively reduced the ambiguity of black-box data-driven models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Liangang应助科研通管家采纳,获得10
刚刚
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
huanger应助科研通管家采纳,获得10
刚刚
桐桐应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
小新应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
一叶知秋应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
3秒前
跳跃的翼完成签到,获得积分10
6秒前
健忘可愁完成签到,获得积分10
7秒前
跳跃的翼发布了新的文献求助10
8秒前
9秒前
无花果应助加百莉采纳,获得10
12秒前
13秒前
Wqian发布了新的文献求助10
14秒前
17秒前
18秒前
CipherSage应助朴素的松采纳,获得10
18秒前
香菜大王完成签到 ,获得积分10
19秒前
Quanta发布了新的文献求助10
19秒前
嘻嘻哈哈发布了新的文献求助10
21秒前
22秒前
深情安青应助keyanxiaobaishu采纳,获得10
23秒前
inter发布了新的文献求助10
24秒前
SnownS发布了新的文献求助20
27秒前
28秒前
orixero应助杰果采纳,获得10
29秒前
33秒前
34秒前
bkagyin应助蓝莓西西果冻采纳,获得10
34秒前
Jodie发布了新的文献求助10
35秒前
机灵冥发布了新的文献求助10
35秒前
慕青应助朴素的松采纳,获得10
37秒前
加百莉发布了新的文献求助10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557705
求助须知:如何正确求助?哪些是违规求助? 4642797
关于积分的说明 14669110
捐赠科研通 4584209
什么是DOI,文献DOI怎么找? 2514668
邀请新用户注册赠送积分活动 1488870
关于科研通互助平台的介绍 1459550