Application of machine learning techniques to model a full-scale wastewater treatment plant with biological nutrient removal

均方误差 人工神经网络 机器学习 支持向量机 计算机科学 人工智能 过程(计算) 数学 统计 操作系统
作者
Mohamed Sherif Zaghloul,Gopal Achari
出处
期刊:Journal of environmental chemical engineering [Elsevier BV]
卷期号:10 (3): 107430-107430 被引量:51
标识
DOI:10.1016/j.jece.2022.107430
摘要

A full-scale biological nutrient removal wastewater treatment process was simulated using artificial intelligence. In wastewater treatment plants, adaptive machine learning models can reduce process disruptions and generate savings through optimized operation. Machine learning is also useful when simulating processes that are particularly complex and where the physio-chemical interactions are not well understood, such as biological nutrients removal. Current models in literature only focus on the prediction of a small number of effluent parameters using a direct input-output approach. This paper presents a machine learning ensemble model that combines artificial neural networks, adaptive neuro-fuzzy inference systems, and support vector regression to predict 15 process parameters that include biomass properties, operation parameters, and effluent characteristics. A historical dataset between 2010 and 2020 was used to develop and validate the model. The model features a six-stage modular model structure where each parameter was predicted using a separate model and based on the preceding predicted parameters. The average correlation coefficient, normalized root mean square error, and symmetric mean absolute error of 69%, 0.06%, and 7.5%, respectively. The ensemble approach improved the average prediction accuracy over individual base models by 5%. The model developed in this study was more versatile than other machine learning models in the literature and relatively reduced the ambiguity of black-box data-driven models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
婷婷完成签到,获得积分10
1秒前
YXHTCM完成签到,获得积分10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
Ancy应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
Dean应助科研通管家采纳,获得150
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
久伴久爱完成签到 ,获得积分10
3秒前
3秒前
浮游应助baill采纳,获得10
3秒前
是小雨呀完成签到,获得积分10
4秒前
5秒前
王士豪发布了新的文献求助50
7秒前
wanci应助微微采纳,获得50
7秒前
Ww完成签到,获得积分10
7秒前
寻359发布了新的文献求助10
7秒前
8秒前
知名不具完成签到 ,获得积分10
8秒前
眼睛大的松鼠完成签到 ,获得积分10
9秒前
10秒前
苹果花发布了新的文献求助20
11秒前
syl完成签到,获得积分10
12秒前
顺心的尔安完成签到,获得积分10
13秒前
星辰大海应助梅川枯枝采纳,获得10
13秒前
852应助Qianfan采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911216
求助须知:如何正确求助?哪些是违规求助? 4186705
关于积分的说明 13001055
捐赠科研通 3954531
什么是DOI,文献DOI怎么找? 2168334
邀请新用户注册赠送积分活动 1186721
关于科研通互助平台的介绍 1094125