Application of machine learning techniques to model a full-scale wastewater treatment plant with biological nutrient removal

均方误差 人工神经网络 机器学习 支持向量机 计算机科学 人工智能 过程(计算) 数学 统计 操作系统
作者
Mohamed Sherif Zaghloul,Gopal Achari
出处
期刊:Journal of environmental chemical engineering [Elsevier BV]
卷期号:10 (3): 107430-107430 被引量:51
标识
DOI:10.1016/j.jece.2022.107430
摘要

A full-scale biological nutrient removal wastewater treatment process was simulated using artificial intelligence. In wastewater treatment plants, adaptive machine learning models can reduce process disruptions and generate savings through optimized operation. Machine learning is also useful when simulating processes that are particularly complex and where the physio-chemical interactions are not well understood, such as biological nutrients removal. Current models in literature only focus on the prediction of a small number of effluent parameters using a direct input-output approach. This paper presents a machine learning ensemble model that combines artificial neural networks, adaptive neuro-fuzzy inference systems, and support vector regression to predict 15 process parameters that include biomass properties, operation parameters, and effluent characteristics. A historical dataset between 2010 and 2020 was used to develop and validate the model. The model features a six-stage modular model structure where each parameter was predicted using a separate model and based on the preceding predicted parameters. The average correlation coefficient, normalized root mean square error, and symmetric mean absolute error of 69%, 0.06%, and 7.5%, respectively. The ensemble approach improved the average prediction accuracy over individual base models by 5%. The model developed in this study was more versatile than other machine learning models in the literature and relatively reduced the ambiguity of black-box data-driven models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Andy.发布了新的文献求助100
1秒前
1秒前
1秒前
贪玩鸵鸟完成签到,获得积分10
1秒前
1秒前
xiao完成签到,获得积分10
2秒前
烟花应助刘婧采纳,获得10
2秒前
ll驳回了Xiaoxiao应助
2秒前
nena发布了新的文献求助10
2秒前
2秒前
可爱的函函应助HCKACECE采纳,获得30
3秒前
ttt77发布了新的文献求助10
3秒前
十八冠六完成签到,获得积分10
3秒前
3秒前
3秒前
liu完成签到,获得积分10
3秒前
3秒前
余海燕发布了新的文献求助10
3秒前
江一帆发布了新的文献求助10
4秒前
莫寒兮完成签到,获得积分10
4秒前
小马甲应助liaoliao采纳,获得10
4秒前
CipherSage应助喜多米430采纳,获得10
4秒前
柿柿如意完成签到,获得积分10
4秒前
roywin完成签到,获得积分10
4秒前
天天快乐应助Qionglin采纳,获得10
5秒前
5秒前
至幸发布了新的文献求助10
6秒前
6秒前
wang发布了新的文献求助10
6秒前
wanci应助易烊干洗采纳,获得10
6秒前
xiao发布了新的文献求助10
7秒前
潇洒的翠丝完成签到,获得积分10
7秒前
tiasn发布了新的文献求助10
7秒前
8秒前
炫酷火锅完成签到,获得积分10
8秒前
li发布了新的文献求助10
8秒前
8秒前
zz完成签到,获得积分10
8秒前
传奇3应助小先生采纳,获得10
9秒前
英姑应助小嘻嘻采纳,获得10
9秒前
高分求助中
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Fermented Coffee Market 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5238122
求助须知:如何正确求助?哪些是违规求助? 4405802
关于积分的说明 13711768
捐赠科研通 4274090
什么是DOI,文献DOI怎么找? 2345419
邀请新用户注册赠送积分活动 1342496
关于科研通互助平台的介绍 1300416