Application of machine learning techniques to model a full-scale wastewater treatment plant with biological nutrient removal

均方误差 人工神经网络 机器学习 支持向量机 计算机科学 人工智能 过程(计算) 数学 统计 操作系统
作者
Mohamed Sherif Zaghloul,Gopal Achari
出处
期刊:Journal of environmental chemical engineering [Elsevier]
卷期号:10 (3): 107430-107430 被引量:51
标识
DOI:10.1016/j.jece.2022.107430
摘要

A full-scale biological nutrient removal wastewater treatment process was simulated using artificial intelligence. In wastewater treatment plants, adaptive machine learning models can reduce process disruptions and generate savings through optimized operation. Machine learning is also useful when simulating processes that are particularly complex and where the physio-chemical interactions are not well understood, such as biological nutrients removal. Current models in literature only focus on the prediction of a small number of effluent parameters using a direct input-output approach. This paper presents a machine learning ensemble model that combines artificial neural networks, adaptive neuro-fuzzy inference systems, and support vector regression to predict 15 process parameters that include biomass properties, operation parameters, and effluent characteristics. A historical dataset between 2010 and 2020 was used to develop and validate the model. The model features a six-stage modular model structure where each parameter was predicted using a separate model and based on the preceding predicted parameters. The average correlation coefficient, normalized root mean square error, and symmetric mean absolute error of 69%, 0.06%, and 7.5%, respectively. The ensemble approach improved the average prediction accuracy over individual base models by 5%. The model developed in this study was more versatile than other machine learning models in the literature and relatively reduced the ambiguity of black-box data-driven models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研究啥发布了新的文献求助10
刚刚
陆小果完成签到,获得积分10
刚刚
1秒前
Dian完成签到,获得积分10
1秒前
xuan完成签到,获得积分10
2秒前
D调的华丽发布了新的文献求助10
2秒前
落后百褶裙完成签到,获得积分10
2秒前
Re完成签到 ,获得积分10
2秒前
popooo完成签到,获得积分10
2秒前
3秒前
3秒前
wjx发布了新的文献求助10
4秒前
神明完成签到,获得积分10
4秒前
知鸢完成签到,获得积分10
4秒前
lgh完成签到,获得积分10
4秒前
XRQ完成签到 ,获得积分10
4秒前
4秒前
77完成签到,获得积分10
5秒前
5秒前
EF完成签到 ,获得积分10
5秒前
思源应助cui采纳,获得10
5秒前
5秒前
6秒前
6秒前
追寻沛萍发布了新的文献求助10
6秒前
6秒前
谦让寻凝完成签到 ,获得积分10
6秒前
cxq发布了新的文献求助10
6秒前
7秒前
AIMS完成签到,获得积分10
7秒前
NOBODY完成签到,获得积分10
8秒前
胡小溪完成签到,获得积分10
8秒前
彭于晏应助tt11111采纳,获得10
8秒前
8秒前
8秒前
雨果完成签到,获得积分10
8秒前
8秒前
Dian发布了新的文献求助10
9秒前
9秒前
黑豆子完成签到,获得积分20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665057
求助须知:如何正确求助?哪些是违规求助? 4874914
关于积分的说明 15111693
捐赠科研通 4824234
什么是DOI,文献DOI怎么找? 2582679
邀请新用户注册赠送积分活动 1536639
关于科研通互助平台的介绍 1495242