Deep learning–based automatic segmentation of meningioma from multiparametric MRI for preoperative meningioma differentiation using radiomic features: a multicentre study

医学 神经组阅片室 分割 脑膜瘤 介入放射学 放射科 磁共振成像 人工智能 医学物理学 计算机科学 神经学 精神科
作者
Haolin Chen,Shuqi Li,Youming Zhang,Lizhi Liu,Xiaofei Lv,Yongju Yi,Guangying Ruan,Chao Ke,Yanqiu Feng
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (10): 7248-7259 被引量:23
标识
DOI:10.1007/s00330-022-08749-9
摘要

Develop and evaluate a deep learning-based automatic meningioma segmentation method for preoperative meningioma differentiation using radiomic features.A retrospective multicentre inclusion of MR examinations (T1/T2-weighted and contrast-enhanced T1-weighted imaging) was conducted. Data from centre 1 were allocated to training (n = 307, age = 50.94 ± 11.51) and internal testing (n = 238, age = 50.70 ± 12.72) cohorts, and data from centre 2 external testing cohort (n = 64, age = 48.45 ± 13.59). A modified attention U-Net was trained for meningioma segmentation. Segmentation accuracy was evaluated by five quantitative metrics. The agreement between radiomic features from manual and automatic segmentations was assessed using intra class correlation coefficient (ICC). After univariate and minimum-redundancy-maximum-relevance feature selection, L1-regularized logistic regression models for differentiating between low-grade (I) and high-grade (II and III) meningiomas were separately constructed using manual and automatic segmentations; their performances were evaluated using ROC analysis.Dice of meningioma segmentation for the internal testing cohort were 0.94 ± 0.04 and 0.91 ± 0.05 for tumour volumes in contrast-enhanced T1-weighted and T2-weighted images, respectively; those for the external testing cohort were 0.90 ± 0.07 and 0.88 ± 0.07. Features extracted using manual and automatic segmentations agreed well, for both the internal (ICC = 0.94, interquartile range: 0.88-0.97) and external (ICC = 0.90, interquartile range: 0.78-70.96) testing cohorts. AUC of radiomic model with automatic segmentation was comparable with that of the model with manual segmentation for both the internal (0.95 vs. 0.93, p = 0.176) and external (0.88 vs. 0.91, p = 0.419) testing cohorts.The developed deep learning-based segmentation method enables automatic and accurate extraction of meningioma from multiparametric MR images and can help deploy radiomics for preoperative meningioma differentiation in clinical practice.• A deep learning-based method was developed for automatic segmentation of meningioma from multiparametric MR images. • The automatic segmentation method enabled accurate extraction of meningiomas and yielded radiomic features that were highly consistent with those that were obtained using manual segmentation. • High-grade meningiomas were preoperatively differentiated from low-grade meningiomas using a radiomic model constructed on features from automatic segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
maliao发布了新的文献求助10
刚刚
zjz发布了新的文献求助10
刚刚
1秒前
CAN完成签到,获得积分10
1秒前
1秒前
su发布了新的文献求助10
1秒前
ding应助WangWaud采纳,获得10
1秒前
junjun00发布了新的文献求助10
2秒前
3秒前
笨笨芝麻发布了新的文献求助10
3秒前
整齐的奎发布了新的文献求助10
3秒前
4秒前
英姑应助summer采纳,获得10
5秒前
KMYSUDA发布了新的文献求助10
5秒前
万能图书馆应助efls采纳,获得10
5秒前
浮游应助Liu采纳,获得10
5秒前
zjz完成签到,获得积分10
6秒前
7秒前
Lucas应助浮浮世世采纳,获得10
7秒前
maliao完成签到,获得积分20
8秒前
小宋完成签到,获得积分10
8秒前
杨阳洋发布了新的文献求助10
9秒前
10秒前
hellosci666完成签到,获得积分10
11秒前
11秒前
12秒前
XHH1994发布了新的文献求助10
13秒前
14秒前
Enuo发布了新的文献求助10
15秒前
Akim应助Ethan采纳,获得10
17秒前
酷炫思菱发布了新的文献求助10
18秒前
18秒前
cttc发布了新的文献求助10
19秒前
WangWaud发布了新的文献求助10
19秒前
19秒前
丘比特应助葱葱采纳,获得10
21秒前
小马甲应助张斯宁采纳,获得10
23秒前
Enuo完成签到,获得积分10
24秒前
24秒前
哈尼发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5287680
求助须知:如何正确求助?哪些是违规求助? 4439796
关于积分的说明 13823033
捐赠科研通 4321964
什么是DOI,文献DOI怎么找? 2372222
邀请新用户注册赠送积分活动 1367807
关于科研通互助平台的介绍 1331322