Deep learning–based automatic segmentation of meningioma from multiparametric MRI for preoperative meningioma differentiation using radiomic features: a multicentre study

医学 神经组阅片室 分割 脑膜瘤 介入放射学 放射科 磁共振成像 人工智能 医学物理学 计算机科学 神经学 精神科
作者
Haolin Chen,Shuqi Li,Youming Zhang,Lizhi Liu,Xiaofei Lv,Yongju Yi,Guangying Ruan,Chao Ke,Yanqiu Feng
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (10): 7248-7259 被引量:23
标识
DOI:10.1007/s00330-022-08749-9
摘要

Develop and evaluate a deep learning-based automatic meningioma segmentation method for preoperative meningioma differentiation using radiomic features.A retrospective multicentre inclusion of MR examinations (T1/T2-weighted and contrast-enhanced T1-weighted imaging) was conducted. Data from centre 1 were allocated to training (n = 307, age = 50.94 ± 11.51) and internal testing (n = 238, age = 50.70 ± 12.72) cohorts, and data from centre 2 external testing cohort (n = 64, age = 48.45 ± 13.59). A modified attention U-Net was trained for meningioma segmentation. Segmentation accuracy was evaluated by five quantitative metrics. The agreement between radiomic features from manual and automatic segmentations was assessed using intra class correlation coefficient (ICC). After univariate and minimum-redundancy-maximum-relevance feature selection, L1-regularized logistic regression models for differentiating between low-grade (I) and high-grade (II and III) meningiomas were separately constructed using manual and automatic segmentations; their performances were evaluated using ROC analysis.Dice of meningioma segmentation for the internal testing cohort were 0.94 ± 0.04 and 0.91 ± 0.05 for tumour volumes in contrast-enhanced T1-weighted and T2-weighted images, respectively; those for the external testing cohort were 0.90 ± 0.07 and 0.88 ± 0.07. Features extracted using manual and automatic segmentations agreed well, for both the internal (ICC = 0.94, interquartile range: 0.88-0.97) and external (ICC = 0.90, interquartile range: 0.78-70.96) testing cohorts. AUC of radiomic model with automatic segmentation was comparable with that of the model with manual segmentation for both the internal (0.95 vs. 0.93, p = 0.176) and external (0.88 vs. 0.91, p = 0.419) testing cohorts.The developed deep learning-based segmentation method enables automatic and accurate extraction of meningioma from multiparametric MR images and can help deploy radiomics for preoperative meningioma differentiation in clinical practice.• A deep learning-based method was developed for automatic segmentation of meningioma from multiparametric MR images. • The automatic segmentation method enabled accurate extraction of meningiomas and yielded radiomic features that were highly consistent with those that were obtained using manual segmentation. • High-grade meningiomas were preoperatively differentiated from low-grade meningiomas using a radiomic model constructed on features from automatic segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柚子发布了新的文献求助10
刚刚
落微完成签到,获得积分10
刚刚
1秒前
研友_VZG7GZ应助今天不熬夜采纳,获得10
1秒前
lidm发布了新的文献求助10
2秒前
打打应助迷路中恶111采纳,获得10
3秒前
3秒前
须尽欢发布了新的文献求助10
3秒前
4秒前
4秒前
lly完成签到,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
rui完成签到,获得积分10
5秒前
5秒前
科研通AI6应助优秀的佳儿采纳,获得10
5秒前
xu应助mildjorker采纳,获得10
6秒前
Hyyy发布了新的文献求助30
6秒前
ElviraHuang完成签到 ,获得积分10
7秒前
研友_VZG7GZ应助洪亮采纳,获得10
7秒前
luo完成签到,获得积分10
8秒前
lili发布了新的文献求助10
9秒前
9秒前
大力完成签到,获得积分10
10秒前
腼腆的晟睿完成签到,获得积分10
10秒前
10秒前
淡淡碧玉完成签到,获得积分10
11秒前
11秒前
11秒前
转转王转转完成签到,获得积分20
12秒前
mmnn完成签到 ,获得积分10
12秒前
12秒前
12秒前
13秒前
眼睛大的冰岚完成签到,获得积分10
13秒前
神说要有光完成签到,获得积分10
14秒前
充电宝应助11111采纳,获得30
14秒前
xxd发布了新的文献求助10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637437
求助须知:如何正确求助?哪些是违规求助? 4743337
关于积分的说明 14999087
捐赠科研通 4795612
什么是DOI,文献DOI怎么找? 2562091
邀请新用户注册赠送积分活动 1521554
关于科研通互助平台的介绍 1481559