Deep learning–based automatic segmentation of meningioma from multiparametric MRI for preoperative meningioma differentiation using radiomic features: a multicentre study

医学 神经组阅片室 分割 脑膜瘤 介入放射学 放射科 磁共振成像 人工智能 医学物理学 计算机科学 神经学 精神科
作者
Haolin Chen,Shuqi Li,Youming Zhang,Lizhi Liu,Xiaofei Lv,Yongju Yi,Guangying Ruan,Chao Ke,Yanqiu Feng
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:32 (10): 7248-7259 被引量:23
标识
DOI:10.1007/s00330-022-08749-9
摘要

Develop and evaluate a deep learning-based automatic meningioma segmentation method for preoperative meningioma differentiation using radiomic features.A retrospective multicentre inclusion of MR examinations (T1/T2-weighted and contrast-enhanced T1-weighted imaging) was conducted. Data from centre 1 were allocated to training (n = 307, age = 50.94 ± 11.51) and internal testing (n = 238, age = 50.70 ± 12.72) cohorts, and data from centre 2 external testing cohort (n = 64, age = 48.45 ± 13.59). A modified attention U-Net was trained for meningioma segmentation. Segmentation accuracy was evaluated by five quantitative metrics. The agreement between radiomic features from manual and automatic segmentations was assessed using intra class correlation coefficient (ICC). After univariate and minimum-redundancy-maximum-relevance feature selection, L1-regularized logistic regression models for differentiating between low-grade (I) and high-grade (II and III) meningiomas were separately constructed using manual and automatic segmentations; their performances were evaluated using ROC analysis.Dice of meningioma segmentation for the internal testing cohort were 0.94 ± 0.04 and 0.91 ± 0.05 for tumour volumes in contrast-enhanced T1-weighted and T2-weighted images, respectively; those for the external testing cohort were 0.90 ± 0.07 and 0.88 ± 0.07. Features extracted using manual and automatic segmentations agreed well, for both the internal (ICC = 0.94, interquartile range: 0.88-0.97) and external (ICC = 0.90, interquartile range: 0.78-70.96) testing cohorts. AUC of radiomic model with automatic segmentation was comparable with that of the model with manual segmentation for both the internal (0.95 vs. 0.93, p = 0.176) and external (0.88 vs. 0.91, p = 0.419) testing cohorts.The developed deep learning-based segmentation method enables automatic and accurate extraction of meningioma from multiparametric MR images and can help deploy radiomics for preoperative meningioma differentiation in clinical practice.• A deep learning-based method was developed for automatic segmentation of meningioma from multiparametric MR images. • The automatic segmentation method enabled accurate extraction of meningiomas and yielded radiomic features that were highly consistent with those that were obtained using manual segmentation. • High-grade meningiomas were preoperatively differentiated from low-grade meningiomas using a radiomic model constructed on features from automatic segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助xueyu采纳,获得10
2秒前
做一只快乐的猪猪侠完成签到,获得积分20
2秒前
2秒前
酷炫的之柔完成签到,获得积分10
3秒前
xunxunmimi发布了新的文献求助10
5秒前
6秒前
乂贰ZERO叁完成签到 ,获得积分10
6秒前
思源应助酷炫的之柔采纳,获得10
7秒前
xiaohu发布了新的文献求助10
7秒前
Ant应助小李采纳,获得30
8秒前
9秒前
9秒前
苹果初阳发布了新的文献求助10
12秒前
此间少年完成签到,获得积分10
12秒前
14秒前
Hairee发布了新的文献求助10
14秒前
思源应助baonali采纳,获得10
15秒前
WXR完成签到,获得积分10
17秒前
蓝胖胖蓝完成签到,获得积分10
18秒前
蜘蛛道理完成签到 ,获得积分10
18秒前
LZM完成签到,获得积分10
19秒前
WuLunbi发布了新的文献求助10
20秒前
21秒前
22秒前
22秒前
23秒前
我还以为春天到了完成签到 ,获得积分10
23秒前
亲爱的融完成签到,获得积分10
24秒前
SherlockHe发布了新的文献求助10
25秒前
momo发布了新的文献求助10
26秒前
米饭多加水完成签到 ,获得积分10
28秒前
潘善若发布了新的文献求助10
29秒前
Jasper应助anna采纳,获得10
33秒前
zzr元亨利贞完成签到,获得积分10
35秒前
riccixuu完成签到 ,获得积分10
36秒前
潘善若发布了新的文献求助10
37秒前
JK完成签到,获得积分20
38秒前
39秒前
39秒前
39秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989263
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253814
捐赠科研通 3270066
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136