Deep learning–based automatic segmentation of meningioma from multiparametric MRI for preoperative meningioma differentiation using radiomic features: a multicentre study

医学 四分位间距 神经组阅片室 分割 脑膜瘤 无线电技术 放射科 磁共振成像 逻辑回归 核医学 人工智能 单变量分析 计算机科学 外科 多元分析 内科学 神经学 精神科
作者
Haolin Chen,Shuqi Li,Youming Zhang,Lizhi Liu,Xiaofei Lv,Yan Yi,Guangying Ruan,Chao Ke,Yanqiu Feng
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (10): 7248-7259 被引量:16
标识
DOI:10.1007/s00330-022-08749-9
摘要

Develop and evaluate a deep learning-based automatic meningioma segmentation method for preoperative meningioma differentiation using radiomic features.A retrospective multicentre inclusion of MR examinations (T1/T2-weighted and contrast-enhanced T1-weighted imaging) was conducted. Data from centre 1 were allocated to training (n = 307, age = 50.94 ± 11.51) and internal testing (n = 238, age = 50.70 ± 12.72) cohorts, and data from centre 2 external testing cohort (n = 64, age = 48.45 ± 13.59). A modified attention U-Net was trained for meningioma segmentation. Segmentation accuracy was evaluated by five quantitative metrics. The agreement between radiomic features from manual and automatic segmentations was assessed using intra class correlation coefficient (ICC). After univariate and minimum-redundancy-maximum-relevance feature selection, L1-regularized logistic regression models for differentiating between low-grade (I) and high-grade (II and III) meningiomas were separately constructed using manual and automatic segmentations; their performances were evaluated using ROC analysis.Dice of meningioma segmentation for the internal testing cohort were 0.94 ± 0.04 and 0.91 ± 0.05 for tumour volumes in contrast-enhanced T1-weighted and T2-weighted images, respectively; those for the external testing cohort were 0.90 ± 0.07 and 0.88 ± 0.07. Features extracted using manual and automatic segmentations agreed well, for both the internal (ICC = 0.94, interquartile range: 0.88-0.97) and external (ICC = 0.90, interquartile range: 0.78-70.96) testing cohorts. AUC of radiomic model with automatic segmentation was comparable with that of the model with manual segmentation for both the internal (0.95 vs. 0.93, p = 0.176) and external (0.88 vs. 0.91, p = 0.419) testing cohorts.The developed deep learning-based segmentation method enables automatic and accurate extraction of meningioma from multiparametric MR images and can help deploy radiomics for preoperative meningioma differentiation in clinical practice.• A deep learning-based method was developed for automatic segmentation of meningioma from multiparametric MR images. • The automatic segmentation method enabled accurate extraction of meningiomas and yielded radiomic features that were highly consistent with those that were obtained using manual segmentation. • High-grade meningiomas were preoperatively differentiated from low-grade meningiomas using a radiomic model constructed on features from automatic segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
栗2发布了新的文献求助10
1秒前
子车茗应助典雅涵瑶采纳,获得10
2秒前
4秒前
4秒前
gc完成签到,获得积分10
4秒前
4秒前
CodeCraft应助小马能发sci采纳,获得10
5秒前
5秒前
顺利的绿柏完成签到,获得积分10
6秒前
7秒前
itachi完成签到,获得积分10
9秒前
9秒前
欢呼阁发布了新的文献求助10
9秒前
yyy发布了新的文献求助10
10秒前
QingMRI发布了新的文献求助10
10秒前
今后应助miao采纳,获得30
10秒前
11秒前
12秒前
15秒前
16秒前
橙汁完成签到,获得积分10
16秒前
陶醉书包完成签到 ,获得积分10
16秒前
CodeCraft应助tll采纳,获得10
16秒前
17秒前
科研通AI2S应助研友_8KX15L采纳,获得10
17秒前
和谐的如柏完成签到,获得积分10
19秒前
djh发布了新的文献求助10
20秒前
21秒前
23秒前
wuw666完成签到,获得积分10
28秒前
QingMRI完成签到,获得积分10
29秒前
小二郎应助酷酷妙梦采纳,获得10
30秒前
搜集达人应助djh采纳,获得10
31秒前
星辰大海应助漂亮的念双采纳,获得10
32秒前
123完成签到,获得积分10
33秒前
felix发布了新的文献求助10
34秒前
liu发布了新的文献求助10
34秒前
36秒前
36秒前
123发布了新的文献求助10
40秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157519
求助须知:如何正确求助?哪些是违规求助? 2808909
关于积分的说明 7879293
捐赠科研通 2467387
什么是DOI,文献DOI怎么找? 1313431
科研通“疑难数据库(出版商)”最低求助积分说明 630398
版权声明 601919