Deep learning–based automatic segmentation of meningioma from multiparametric MRI for preoperative meningioma differentiation using radiomic features: a multicentre study

医学 神经组阅片室 分割 脑膜瘤 介入放射学 放射科 磁共振成像 人工智能 医学物理学 计算机科学 神经学 精神科
作者
Haolin Chen,Shuqi Li,Youming Zhang,Lizhi Liu,Xiaofei Lv,Yongju Yi,Guangying Ruan,Chao Ke,Yanqiu Feng
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:32 (10): 7248-7259 被引量:23
标识
DOI:10.1007/s00330-022-08749-9
摘要

Develop and evaluate a deep learning-based automatic meningioma segmentation method for preoperative meningioma differentiation using radiomic features.A retrospective multicentre inclusion of MR examinations (T1/T2-weighted and contrast-enhanced T1-weighted imaging) was conducted. Data from centre 1 were allocated to training (n = 307, age = 50.94 ± 11.51) and internal testing (n = 238, age = 50.70 ± 12.72) cohorts, and data from centre 2 external testing cohort (n = 64, age = 48.45 ± 13.59). A modified attention U-Net was trained for meningioma segmentation. Segmentation accuracy was evaluated by five quantitative metrics. The agreement between radiomic features from manual and automatic segmentations was assessed using intra class correlation coefficient (ICC). After univariate and minimum-redundancy-maximum-relevance feature selection, L1-regularized logistic regression models for differentiating between low-grade (I) and high-grade (II and III) meningiomas were separately constructed using manual and automatic segmentations; their performances were evaluated using ROC analysis.Dice of meningioma segmentation for the internal testing cohort were 0.94 ± 0.04 and 0.91 ± 0.05 for tumour volumes in contrast-enhanced T1-weighted and T2-weighted images, respectively; those for the external testing cohort were 0.90 ± 0.07 and 0.88 ± 0.07. Features extracted using manual and automatic segmentations agreed well, for both the internal (ICC = 0.94, interquartile range: 0.88-0.97) and external (ICC = 0.90, interquartile range: 0.78-70.96) testing cohorts. AUC of radiomic model with automatic segmentation was comparable with that of the model with manual segmentation for both the internal (0.95 vs. 0.93, p = 0.176) and external (0.88 vs. 0.91, p = 0.419) testing cohorts.The developed deep learning-based segmentation method enables automatic and accurate extraction of meningioma from multiparametric MR images and can help deploy radiomics for preoperative meningioma differentiation in clinical practice.• A deep learning-based method was developed for automatic segmentation of meningioma from multiparametric MR images. • The automatic segmentation method enabled accurate extraction of meningiomas and yielded radiomic features that were highly consistent with those that were obtained using manual segmentation. • High-grade meningiomas were preoperatively differentiated from low-grade meningiomas using a radiomic model constructed on features from automatic segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_LpvQlZ完成签到,获得积分10
7秒前
优雅的笑晴应助朴素海亦采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
10秒前
辣目童子完成签到 ,获得积分10
10秒前
明天更好完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
16秒前
Beyond095完成签到 ,获得积分10
18秒前
xiaowang完成签到 ,获得积分10
19秒前
Chloe完成签到,获得积分10
21秒前
淡然完成签到 ,获得积分10
23秒前
26秒前
糯米团的完成签到 ,获得积分10
28秒前
wjswift完成签到,获得积分10
29秒前
量子星尘发布了新的文献求助10
32秒前
33秒前
江夏完成签到 ,获得积分10
35秒前
Oliver完成签到 ,获得积分10
36秒前
量子星尘发布了新的文献求助50
39秒前
41秒前
小亮哈哈完成签到,获得积分0
47秒前
苗苗发布了新的文献求助10
48秒前
量子星尘发布了新的文献求助10
58秒前
科小白完成签到 ,获得积分10
1分钟前
李健应助邵小庆采纳,获得10
1分钟前
FL完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
浩浩完成签到 ,获得积分10
1分钟前
邵小庆发布了新的文献求助10
1分钟前
mm完成签到 ,获得积分10
1分钟前
净禅完成签到 ,获得积分10
1分钟前
朴素海亦发布了新的文献求助10
1分钟前
1分钟前
1分钟前
田様应助外向的Q采纳,获得10
1分钟前
niu完成签到,获得积分10
1分钟前
坚强志泽完成签到 ,获得积分10
1分钟前
chillyork完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4612966
求助须知:如何正确求助?哪些是违规求助? 4017956
关于积分的说明 12436915
捐赠科研通 3700270
什么是DOI,文献DOI怎么找? 2040657
邀请新用户注册赠送积分活动 1073414
科研通“疑难数据库(出版商)”最低求助积分说明 957049