已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning–based automatic segmentation of meningioma from multiparametric MRI for preoperative meningioma differentiation using radiomic features: a multicentre study

医学 神经组阅片室 分割 脑膜瘤 介入放射学 放射科 磁共振成像 人工智能 医学物理学 计算机科学 神经学 精神科
作者
Haolin Chen,Shuqi Li,Youming Zhang,Lizhi Liu,Xiaofei Lv,Yongju Yi,Guangying Ruan,Chao Ke,Yanqiu Feng
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (10): 7248-7259 被引量:23
标识
DOI:10.1007/s00330-022-08749-9
摘要

Develop and evaluate a deep learning-based automatic meningioma segmentation method for preoperative meningioma differentiation using radiomic features.A retrospective multicentre inclusion of MR examinations (T1/T2-weighted and contrast-enhanced T1-weighted imaging) was conducted. Data from centre 1 were allocated to training (n = 307, age = 50.94 ± 11.51) and internal testing (n = 238, age = 50.70 ± 12.72) cohorts, and data from centre 2 external testing cohort (n = 64, age = 48.45 ± 13.59). A modified attention U-Net was trained for meningioma segmentation. Segmentation accuracy was evaluated by five quantitative metrics. The agreement between radiomic features from manual and automatic segmentations was assessed using intra class correlation coefficient (ICC). After univariate and minimum-redundancy-maximum-relevance feature selection, L1-regularized logistic regression models for differentiating between low-grade (I) and high-grade (II and III) meningiomas were separately constructed using manual and automatic segmentations; their performances were evaluated using ROC analysis.Dice of meningioma segmentation for the internal testing cohort were 0.94 ± 0.04 and 0.91 ± 0.05 for tumour volumes in contrast-enhanced T1-weighted and T2-weighted images, respectively; those for the external testing cohort were 0.90 ± 0.07 and 0.88 ± 0.07. Features extracted using manual and automatic segmentations agreed well, for both the internal (ICC = 0.94, interquartile range: 0.88-0.97) and external (ICC = 0.90, interquartile range: 0.78-70.96) testing cohorts. AUC of radiomic model with automatic segmentation was comparable with that of the model with manual segmentation for both the internal (0.95 vs. 0.93, p = 0.176) and external (0.88 vs. 0.91, p = 0.419) testing cohorts.The developed deep learning-based segmentation method enables automatic and accurate extraction of meningioma from multiparametric MR images and can help deploy radiomics for preoperative meningioma differentiation in clinical practice.• A deep learning-based method was developed for automatic segmentation of meningioma from multiparametric MR images. • The automatic segmentation method enabled accurate extraction of meningiomas and yielded radiomic features that were highly consistent with those that were obtained using manual segmentation. • High-grade meningiomas were preoperatively differentiated from low-grade meningiomas using a radiomic model constructed on features from automatic segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嗨Honey完成签到 ,获得积分10
2秒前
3秒前
田田田chong完成签到,获得积分10
3秒前
研友_qZ6V1Z完成签到,获得积分10
5秒前
ACCEPT完成签到 ,获得积分10
5秒前
6秒前
6秒前
芒果完成签到 ,获得积分10
8秒前
流萤发布了新的文献求助10
9秒前
涵涵涵hh完成签到 ,获得积分10
12秒前
12秒前
闪闪的梦柏完成签到 ,获得积分10
13秒前
meiqi完成签到 ,获得积分10
13秒前
烟花应助耍酷罡采纳,获得10
13秒前
超级翰完成签到 ,获得积分10
14秒前
嘿嘿应助梓念采纳,获得10
14秒前
嘿嘿应助梓念采纳,获得10
14秒前
龙骑士25完成签到 ,获得积分10
15秒前
细心的如天完成签到 ,获得积分10
15秒前
jzhou65发布了新的文献求助10
16秒前
流萤完成签到,获得积分10
16秒前
17秒前
SciGPT应助Jinyang采纳,获得10
19秒前
蟒玉朝天完成签到 ,获得积分10
20秒前
mole发布了新的文献求助10
21秒前
宝宝面条完成签到 ,获得积分10
24秒前
乐乐应助田田田chong采纳,获得10
25秒前
tejing1158完成签到 ,获得积分10
29秒前
33秒前
干净思远完成签到,获得积分10
34秒前
嘿嘿应助Whr采纳,获得10
35秒前
爆米花应助ni采纳,获得10
35秒前
zf完成签到 ,获得积分20
37秒前
ccm应助科研通管家采纳,获得30
37秒前
ccm应助科研通管家采纳,获得10
37秒前
酷波er应助科研通管家采纳,获得10
37秒前
科研通AI2S应助科研通管家采纳,获得10
37秒前
可爱的函函应助可靠如风采纳,获得10
37秒前
Jinyang发布了新的文献求助10
37秒前
小熊天天学习完成签到 ,获得积分10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573165
求助须知:如何正确求助?哪些是违规求助? 4659310
关于积分的说明 14724324
捐赠科研通 4599135
什么是DOI,文献DOI怎么找? 2524124
邀请新用户注册赠送积分活动 1494675
关于科研通互助平台的介绍 1464693