Patients with acute and chronic wounds have been increasing around the world, and the demand for wound treatment and care is also increasing. Therefore, a new nanofiber wound dressing should be prepared to promote the wound healing process. In this study, we report the design and preparation of a hierarchical structural film wound dressing. The top layer is composed of profoundly hydrophobic polycaprolactone (PCL), which is used to resist the adhesion of external microorganisms. The bottom layer is made of hydrophilic gelatin, which provides a moist healing environment for the wound. The middle layer is composed of hydrophilic Janus nanofibers prepared with the latest side-by-side electrospinning technique. Gelatin and PCL are used as polymer matrices loaded with the ciprofloxacin (CIP) drug and zinc oxide nanoparticles (n-ZnO), respectively. Test results show that the dressing has outstanding surface wettability, excellent mechanical properties, and rapid drug release. The presence of biologically active ingredients provides antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Finally, the results of wound healing in mice show accelerated collagen deposition, promotion of angiogenesis, and complete wound healing within 14 days. Overall, this hierarchical structural dressing has a strong potential for accelerating wound healing.