Swin transformer for fast MRI

欠采样 计算机科学 人工智能 分割 卷积神经网络 稳健性(进化) 模式识别(心理学) 计算机视觉 变压器 电压 工程类 电气工程 生物化学 化学 基因
作者
Jiahao Huang,Yingying Fang,Yinzhe Wu,Huanjun Wu,Zhifan Gao,Yang Li,Javier Del Ser,Jun Xia,Guang Yang
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:493: 281-304 被引量:52
标识
DOI:10.1016/j.neucom.2022.04.051
摘要

Magnetic resonance imaging (MRI) is an important non-invasive clinical tool that can produce high-resolution and reproducible images. However, a long scanning time is required for high-quality MR images, which leads to exhaustion and discomfort of patients, inducing more artefacts due to voluntary movements of the patients and involuntary physiological movements. To accelerate the scanning process, methods by k-space undersampling and deep learning based reconstruction have been popularised. This work introduced SwinMR, a novel Swin transformer based method for fast MRI reconstruction. The whole network consisted of an input module (IM), a feature extraction module (FEM) and an output module (OM). The IM and OM were 2D convolutional layers and the FEM was composed of a cascaded of residual Swin transformer blocks (RSTBs) and 2D convolutional layers. The RSTB consisted of a series of Swin transformer layers (STLs). The shifted windows multi-head self-attention (W-MSA/SW-MSA) of STL was performed in shifted windows rather than the multi-head self-attention (MSA) of the original transformer in the whole image space. A novel multi-channel loss was proposed by using the sensitivity maps, which was proved to reserve more textures and details. We performed a series of comparative studies and ablation studies in the Calgary-Campinas public brain MR dataset and conducted a downstream segmentation experiment in the Multi-modal Brain Tumour Segmentation Challenge 2017 dataset. The results demonstrate our SwinMR achieved high-quality reconstruction compared with other benchmark methods, and it shows great robustness with different undersampling masks, under noise interruption and on different datasets. The code is publicly available at https://github.com/ayanglab/SwinMR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Jasper应助白开水采纳,获得30
4秒前
英勇羿发布了新的文献求助10
5秒前
打打应助目分采纳,获得10
5秒前
坦率秋玲完成签到,获得积分10
7秒前
orixero应助同瓜不同命采纳,获得10
8秒前
chang完成签到,获得积分10
8秒前
李爱国应助木沂采纳,获得10
8秒前
9秒前
李爱国应助lcxszsd采纳,获得10
11秒前
13秒前
17秒前
科目三应助痴情的寒云采纳,获得10
17秒前
目分发布了新的文献求助10
18秒前
20秒前
悦耳玲完成签到 ,获得积分10
20秒前
21秒前
pluto应助刘家小姐姐采纳,获得10
24秒前
24秒前
王云翔发布了新的文献求助10
25秒前
TTiger007发布了新的文献求助10
26秒前
28秒前
jiangjiang完成签到,获得积分10
29秒前
伊诺完成签到,获得积分10
29秒前
30秒前
30秒前
31秒前
七月流火应助jing2000yr采纳,获得50
32秒前
伊诺发布了新的文献求助10
32秒前
5km完成签到,获得积分10
33秒前
36秒前
36秒前
37秒前
37秒前
读个博吧发布了新的文献求助10
38秒前
38秒前
Mathletics完成签到 ,获得积分10
40秒前
跑在颖发布了新的文献求助10
41秒前
42秒前
过儿发布了新的文献求助10
42秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962523
求助须知:如何正确求助?哪些是违规求助? 3508549
关于积分的说明 11141583
捐赠科研通 3241262
什么是DOI,文献DOI怎么找? 1791486
邀请新用户注册赠送积分活动 872876
科研通“疑难数据库(出版商)”最低求助积分说明 803474