亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Swin transformer for fast MRI

欠采样 计算机科学 人工智能 分割 卷积神经网络 稳健性(进化) 模式识别(心理学) 计算机视觉 变压器 电压 工程类 生物化学 基因 电气工程 化学
作者
Jiahao Huang,Yingying Fang,Yinzhe Wu,Huanjun Wu,Zhifan Gao,Yang Li,Javier Del Ser,Jun Xia,Guang Yang
出处
期刊:Neurocomputing [Elsevier]
卷期号:493: 281-304 被引量:139
标识
DOI:10.1016/j.neucom.2022.04.051
摘要

Magnetic resonance imaging (MRI) is an important non-invasive clinical tool that can produce high-resolution and reproducible images. However, a long scanning time is required for high-quality MR images, which leads to exhaustion and discomfort of patients, inducing more artefacts due to voluntary movements of the patients and involuntary physiological movements. To accelerate the scanning process, methods by k-space undersampling and deep learning based reconstruction have been popularised. This work introduced SwinMR, a novel Swin transformer based method for fast MRI reconstruction. The whole network consisted of an input module (IM), a feature extraction module (FEM) and an output module (OM). The IM and OM were 2D convolutional layers and the FEM was composed of a cascaded of residual Swin transformer blocks (RSTBs) and 2D convolutional layers. The RSTB consisted of a series of Swin transformer layers (STLs). The shifted windows multi-head self-attention (W-MSA/SW-MSA) of STL was performed in shifted windows rather than the multi-head self-attention (MSA) of the original transformer in the whole image space. A novel multi-channel loss was proposed by using the sensitivity maps, which was proved to reserve more textures and details. We performed a series of comparative studies and ablation studies in the Calgary-Campinas public brain MR dataset and conducted a downstream segmentation experiment in the Multi-modal Brain Tumour Segmentation Challenge 2017 dataset. The results demonstrate our SwinMR achieved high-quality reconstruction compared with other benchmark methods, and it shows great robustness with different undersampling masks, under noise interruption and on different datasets. The code is publicly available at https://github.com/ayanglab/SwinMR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
英俊的铭应助yanifang采纳,获得30
8秒前
15秒前
16秒前
18秒前
AXX041795发布了新的文献求助10
20秒前
烟花应助luming采纳,获得30
21秒前
西瓜霜发布了新的文献求助10
22秒前
31秒前
西瓜霜完成签到,获得积分10
35秒前
领导范儿应助AXX041795采纳,获得10
35秒前
35秒前
00hello00发布了新的文献求助10
37秒前
luming发布了新的文献求助30
40秒前
luming完成签到,获得积分10
54秒前
久某完成签到,获得积分20
54秒前
量子星尘发布了新的文献求助10
58秒前
58秒前
冷静小懒虫完成签到,获得积分10
59秒前
1分钟前
1分钟前
顾矜应助li采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
地老天框完成签到,获得积分10
1分钟前
1分钟前
1分钟前
nhzz2023完成签到 ,获得积分0
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
lzp完成签到,获得积分10
1分钟前
执着寄容发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723513
求助须知:如何正确求助?哪些是违规求助? 5278467
关于积分的说明 15298818
捐赠科研通 4871973
什么是DOI,文献DOI怎么找? 2616395
邀请新用户注册赠送积分活动 1566216
关于科研通互助平台的介绍 1523110