Swin transformer for fast MRI

欠采样 计算机科学 人工智能 分割 卷积神经网络 稳健性(进化) 模式识别(心理学) 计算机视觉 变压器 电压 工程类 电气工程 生物化学 化学 基因
作者
Jiahao Huang,Yingying Fang,Yinzhe Wu,Huanjun Wu,Zhifan Gao,Yang Li,Javier Del Ser,Jun Xia,Guang Yang
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:493: 281-304 被引量:120
标识
DOI:10.1016/j.neucom.2022.04.051
摘要

Magnetic resonance imaging (MRI) is an important non-invasive clinical tool that can produce high-resolution and reproducible images. However, a long scanning time is required for high-quality MR images, which leads to exhaustion and discomfort of patients, inducing more artefacts due to voluntary movements of the patients and involuntary physiological movements. To accelerate the scanning process, methods by k-space undersampling and deep learning based reconstruction have been popularised. This work introduced SwinMR, a novel Swin transformer based method for fast MRI reconstruction. The whole network consisted of an input module (IM), a feature extraction module (FEM) and an output module (OM). The IM and OM were 2D convolutional layers and the FEM was composed of a cascaded of residual Swin transformer blocks (RSTBs) and 2D convolutional layers. The RSTB consisted of a series of Swin transformer layers (STLs). The shifted windows multi-head self-attention (W-MSA/SW-MSA) of STL was performed in shifted windows rather than the multi-head self-attention (MSA) of the original transformer in the whole image space. A novel multi-channel loss was proposed by using the sensitivity maps, which was proved to reserve more textures and details. We performed a series of comparative studies and ablation studies in the Calgary-Campinas public brain MR dataset and conducted a downstream segmentation experiment in the Multi-modal Brain Tumour Segmentation Challenge 2017 dataset. The results demonstrate our SwinMR achieved high-quality reconstruction compared with other benchmark methods, and it shows great robustness with different undersampling masks, under noise interruption and on different datasets. The code is publicly available at https://github.com/ayanglab/SwinMR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
RE完成签到 ,获得积分10
2秒前
CMUSK发布了新的文献求助10
2秒前
KK完成签到,获得积分10
2秒前
成就绿柳完成签到,获得积分10
3秒前
3秒前
lixoii完成签到 ,获得积分10
3秒前
李一一完成签到 ,获得积分10
4秒前
4秒前
amanda完成签到,获得积分20
4秒前
科研通AI2S应助糊涂的万采纳,获得10
5秒前
Akim应助nyfz2002采纳,获得10
7秒前
8秒前
8秒前
Rain1god完成签到,获得积分10
8秒前
豆子发布了新的文献求助10
8秒前
CO2完成签到,获得积分10
8秒前
Betaremains发布了新的文献求助10
8秒前
叶子完成签到,获得积分10
10秒前
10秒前
10秒前
hhh完成签到,获得积分10
11秒前
Diss发布了新的文献求助10
11秒前
angela完成签到,获得积分10
11秒前
12秒前
Q清风慕竹完成签到,获得积分10
13秒前
烤番薯发布了新的文献求助10
14秒前
科研小笨猪完成签到,获得积分10
14秒前
qyf完成签到,获得积分10
14秒前
FashionBoy应助syxz0628采纳,获得10
15秒前
韭黄发布了新的文献求助10
15秒前
下雪啦给下雪啦的求助进行了留言
17秒前
多余完成签到,获得积分10
17秒前
swaggy完成签到 ,获得积分10
17秒前
糊涂的书竹完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
叶子完成签到,获得积分10
19秒前
荒诞DE谎言完成签到 ,获得积分10
19秒前
乐乐应助科研小花狗采纳,获得10
19秒前
好名字完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4613581
求助须知:如何正确求助?哪些是违规求助? 4018192
关于积分的说明 12437368
捐赠科研通 3700791
什么是DOI,文献DOI怎么找? 2040931
邀请新用户注册赠送积分活动 1073664
科研通“疑难数据库(出版商)”最低求助积分说明 957328