Swin transformer for fast MRI

欠采样 计算机科学 人工智能 分割 卷积神经网络 稳健性(进化) 模式识别(心理学) 计算机视觉 变压器 电压 工程类 电气工程 生物化学 化学 基因
作者
Jiahao Huang,Yingying Fang,Yinzhe Wu,Huanjun Wu,Zhifan Gao,Yang Li,Javier Del Ser,Jun Xia,Guang Yang
出处
期刊:Neurocomputing [Elsevier]
卷期号:493: 281-304 被引量:139
标识
DOI:10.1016/j.neucom.2022.04.051
摘要

Magnetic resonance imaging (MRI) is an important non-invasive clinical tool that can produce high-resolution and reproducible images. However, a long scanning time is required for high-quality MR images, which leads to exhaustion and discomfort of patients, inducing more artefacts due to voluntary movements of the patients and involuntary physiological movements. To accelerate the scanning process, methods by k-space undersampling and deep learning based reconstruction have been popularised. This work introduced SwinMR, a novel Swin transformer based method for fast MRI reconstruction. The whole network consisted of an input module (IM), a feature extraction module (FEM) and an output module (OM). The IM and OM were 2D convolutional layers and the FEM was composed of a cascaded of residual Swin transformer blocks (RSTBs) and 2D convolutional layers. The RSTB consisted of a series of Swin transformer layers (STLs). The shifted windows multi-head self-attention (W-MSA/SW-MSA) of STL was performed in shifted windows rather than the multi-head self-attention (MSA) of the original transformer in the whole image space. A novel multi-channel loss was proposed by using the sensitivity maps, which was proved to reserve more textures and details. We performed a series of comparative studies and ablation studies in the Calgary-Campinas public brain MR dataset and conducted a downstream segmentation experiment in the Multi-modal Brain Tumour Segmentation Challenge 2017 dataset. The results demonstrate our SwinMR achieved high-quality reconstruction compared with other benchmark methods, and it shows great robustness with different undersampling masks, under noise interruption and on different datasets. The code is publicly available at https://github.com/ayanglab/SwinMR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
月魂关注了科研通微信公众号
1秒前
1秒前
mika发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
2秒前
龅牙苏发布了新的文献求助10
2秒前
3秒前
Improve发布了新的文献求助10
3秒前
3秒前
shdheud完成签到,获得积分10
3秒前
xxxzzz完成签到 ,获得积分10
3秒前
细腻初雪发布了新的文献求助10
4秒前
科研通AI6应助ypj9777采纳,获得10
4秒前
4秒前
津津乐道发布了新的文献求助10
5秒前
听花开的声音完成签到,获得积分10
5秒前
5秒前
angelinazh发布了新的文献求助20
5秒前
汉堡包应助谢建国采纳,获得10
5秒前
加勒比海带完成签到,获得积分10
6秒前
zkl发布了新的文献求助10
6秒前
坦率鱼发布了新的文献求助30
6秒前
8秒前
火山上的鲍师傅完成签到,获得积分10
8秒前
852应助秋水采纳,获得10
8秒前
summer应助大帅采纳,获得10
8秒前
orange发布了新的文献求助10
9秒前
9秒前
傲娇如天发布了新的文献求助10
10秒前
Improve完成签到,获得积分10
10秒前
11秒前
狮子沟核聚变骡子完成签到 ,获得积分10
11秒前
景玉完成签到,获得积分20
11秒前
111舒舒完成签到 ,获得积分10
11秒前
whj完成签到 ,获得积分10
11秒前
An2ni0发布了新的文献求助10
12秒前
12秒前
津津乐道完成签到,获得积分10
13秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5338621
求助须知:如何正确求助?哪些是违规求助? 4475739
关于积分的说明 13929215
捐赠科研通 4370994
什么是DOI,文献DOI怎么找? 2401582
邀请新用户注册赠送积分活动 1394626
关于科研通互助平台的介绍 1366445