Swin transformer for fast MRI

欠采样 计算机科学 人工智能 分割 卷积神经网络 稳健性(进化) 模式识别(心理学) 计算机视觉 变压器 电压 工程类 生物化学 基因 电气工程 化学
作者
Jiahao Huang,Yingying Fang,Yinzhe Wu,Huanjun Wu,Zhifan Gao,Yang Li,Javier Del Ser,Jun Xia,Guang Yang
出处
期刊:Neurocomputing [Elsevier]
卷期号:493: 281-304 被引量:139
标识
DOI:10.1016/j.neucom.2022.04.051
摘要

Magnetic resonance imaging (MRI) is an important non-invasive clinical tool that can produce high-resolution and reproducible images. However, a long scanning time is required for high-quality MR images, which leads to exhaustion and discomfort of patients, inducing more artefacts due to voluntary movements of the patients and involuntary physiological movements. To accelerate the scanning process, methods by k-space undersampling and deep learning based reconstruction have been popularised. This work introduced SwinMR, a novel Swin transformer based method for fast MRI reconstruction. The whole network consisted of an input module (IM), a feature extraction module (FEM) and an output module (OM). The IM and OM were 2D convolutional layers and the FEM was composed of a cascaded of residual Swin transformer blocks (RSTBs) and 2D convolutional layers. The RSTB consisted of a series of Swin transformer layers (STLs). The shifted windows multi-head self-attention (W-MSA/SW-MSA) of STL was performed in shifted windows rather than the multi-head self-attention (MSA) of the original transformer in the whole image space. A novel multi-channel loss was proposed by using the sensitivity maps, which was proved to reserve more textures and details. We performed a series of comparative studies and ablation studies in the Calgary-Campinas public brain MR dataset and conducted a downstream segmentation experiment in the Multi-modal Brain Tumour Segmentation Challenge 2017 dataset. The results demonstrate our SwinMR achieved high-quality reconstruction compared with other benchmark methods, and it shows great robustness with different undersampling masks, under noise interruption and on different datasets. The code is publicly available at https://github.com/ayanglab/SwinMR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
安鹏应助科研通管家采纳,获得10
刚刚
安鹏应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
安鹏应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
安鹏应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
cy完成签到,获得积分10
4秒前
5秒前
Hyp完成签到 ,获得积分10
7秒前
西海岸的风完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
12秒前
Owen应助张小采纳,获得10
17秒前
tao完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助10
28秒前
小呵点完成签到 ,获得积分10
29秒前
LuckyMM完成签到 ,获得积分10
29秒前
陈曦读研版完成签到 ,获得积分10
30秒前
量子星尘发布了新的文献求助10
30秒前
胖胖玩啊玩完成签到 ,获得积分10
32秒前
344061512完成签到 ,获得积分10
33秒前
凌泉完成签到 ,获得积分10
34秒前
37秒前
博弈完成签到 ,获得积分10
43秒前
43秒前
bckl888完成签到,获得积分10
44秒前
量子星尘发布了新的文献求助10
49秒前
泽2011完成签到 ,获得积分10
51秒前
solution发布了新的文献求助10
52秒前
wonwojo完成签到 ,获得积分10
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773288
求助须知:如何正确求助?哪些是违规求助? 5609323
关于积分的说明 15430767
捐赠科研通 4905836
什么是DOI,文献DOI怎么找? 2639845
邀请新用户注册赠送积分活动 1587745
关于科研通互助平台的介绍 1542740