Limitations of machine learning models when predicting compounds with completely new chemistries: possible improvements applied to the discovery of new non-fullerene acceptors

计算机科学 机器学习 班级(哲学) 人工智能 分类 价值(数学) 数据挖掘
作者
Zhi‐Wen Zhao,Marcos del Cueto,Alessandro Troisi
出处
期刊:Digital discovery [The Royal Society of Chemistry]
卷期号:1 (3): 266-276 被引量:16
标识
DOI:10.1039/d2dd00004k
摘要

We try to determine if machine learning (ML) methods, applied to the discovery of new materials on the basis of existing data sets, have the power to predict completely new classes of compounds (extrapolating) or perform well only when interpolating between known materials. We introduce the leave-one-group-out cross-validation, in which the ML model is trained to explicitly perform extrapolations of unseen chemical families. This approach can be used across materials science and chemistry problems to improve the added value of ML predictions, instead of using extrapolative ML models that were trained with a regular cross-validation. We consider as a case study the problem of the discovery of non-fullerene acceptors because novel classes of acceptors are naturally classified into distinct chemical families. We show that conventional ML methods are not useful in practice when attempting to predict the efficiency of a completely novel class of materials. The approach proposed in this work increases the accuracy of the predictions to enable at least the categorization of materials with a performance above and below the median value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
墨阳初晴完成签到,获得积分10
1秒前
方赫然应助感动归尘采纳,获得10
1秒前
Zert发布了新的文献求助10
2秒前
3秒前
小超人吼吼应助DE2022采纳,获得10
3秒前
4秒前
搞怪的元菱关注了科研通微信公众号
4秒前
斯文泥猴桃完成签到,获得积分20
5秒前
5秒前
6秒前
buno应助G_Serron采纳,获得10
7秒前
buno应助赵维雪采纳,获得10
7秒前
欢呼的寻双完成签到,获得积分20
8秒前
8R60d8应助王饱饱采纳,获得10
8秒前
9秒前
苽峰发布了新的文献求助10
9秒前
10秒前
10秒前
烤鸭发布了新的文献求助10
11秒前
Mineme发布了新的文献求助10
11秒前
12秒前
科研通AI2S应助mhr采纳,获得30
12秒前
思源应助puyuanting采纳,获得10
13秒前
13秒前
方赫然应助howdyy采纳,获得10
14秒前
15秒前
从容追命发布了新的文献求助30
16秒前
20秒前
Lignin应助有魅力凉面采纳,获得10
21秒前
吃菠萝的桃子完成签到 ,获得积分10
22秒前
23秒前
24秒前
今后应助DE2022采纳,获得10
24秒前
佟翠芙完成签到,获得积分20
24秒前
24秒前
24秒前
25秒前
完美世界应助传统的戎采纳,获得10
25秒前
27秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233445
求助须知:如何正确求助?哪些是违规求助? 2879969
关于积分的说明 8213423
捐赠科研通 2547415
什么是DOI,文献DOI怎么找? 1376927
科研通“疑难数据库(出版商)”最低求助积分说明 647713
邀请新用户注册赠送积分活动 623150